Temporary Layoffs, Loss-of-Recall, and Cyclical Unemployment Dynamics

Mark Gertler¹, Christopher Huckfeldt², Antonella Trigari³

¹New York University, NBER

²Federal Reserve Board

³Bocconi University, CEPR, and IGIER

Society for Economic Dynamics June 27, 2024

The views expressed in this paper/presentation are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or any other person associated with the Federal Reserve System.

What We Do (1/2)

- ▶ Document the contribution of temporary layoffs (TL) to unemployment dynamics, from 1978 onwards
- Study contribution of "loss-of-recall" to the cyclicality of unemployment
- Develop model of unemployment fluctuations that distinguishes between temporary and permanent separations ...

What We Do (2/2)

- ► Model has two types of unemployment:
 - Jobless unemployment (JL): search for new job
 - Temporary-layoff unemployment (TL): wait for recall

Worker in u_{TL} moves to u_{JL} if prior job is destroyed (i.e., loss-of-recall)

- Calibrate model to dynamics of jobless and temporary-layoff unemployment using CPS, 1979-2019
- Adapt the model to study the Covid-19 labor market

Why We Do It (1/2)

Revisit recessionary impact of temporary layoffs

- Stabilizing "direct" effect: due to recall hiring
 - ▶ Workers in u_{TL} return to work faster than workers in u_{JL}
 - Stablizing force of temporary layoffs vs. permanent separations
 - Primary focus of existing literature
- Destabilizing "indirect" effect: due to loss-of-recall
 - ▶ Workers in u_{TL} may lose their recall option and move to u_{JL}
 - They do so at a higher rate during recessions
 - \blacktriangleright We estimate $u_{JL\text{-from-}TL}$ to be countercyclical and highly volatile
 - Contributes to countercyclical duration dependence

Note: recall and loss-of-recall are endogenous and thus policy-dependent

Why We Do It (2/2)

- Onset of Covid-19 pandemic: surge of temporary layoffs
 - First month: 15% of employed workers move to u_{TL}
 - \triangleright u_{TL} remains persistently high thereafter (across all sectors)
- Fiscal response: Paycheck Protection Program (PPP)
 - Forgivable loans for firms to recall workers
 - \$953-billion program— larger than 2009 Recovery Act
- What role did PPP play in shaping employment recovery?
 - ▶ What is the no-PPP counterfactual? Requires structural model
- \triangleright Our findings: Large monthly reductions in u_{JL} due to PPP
 - $ightharpoonup \approx 2$ p.p. in short-run, ≥ 1 p.p. thru May 2021
 - Achieved by preventing loss-of-recall

Plan

- ► Empirics of temporary-layoff unemployment and loss-of-recall
- Model (three stocks, five flows)
- Model evaluation

and then

► Application to Covid-19 Recession

Empirics of

Temporary-Layoff Unemployment

& Loss-of-Recall

1. u_{TL} comprises just 1/8 of total unemployment (u)

Table: Total (U), jobless (JL), and temporary-layoff (TL) unemployment, 1978–2019

	U =		
	JL + TL	JL	TL
mean(x)	6.2	5.4	0.8
std(x)/std(Y)	8.5	8.6	9.7
corr(<i>x</i> , <i>Y</i>)	-0.86	-0.82	-0.87

For second and third row, series are taken as (1) quarterly averages of seasonally adjusted monthly series, (2) logged, (3) HP-filtered with smoothing parameter 1600

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u

Table: Gross worker flows, 1978–2019

Ta

From	Ε	TL	JL	Ν		
E	0.955	0.005	0.011	0.029		
TL	0.435	0.245	0.191	0.129		
JL	0.244	0.022	0.475	0.259		
Ν	0.043	0.001	0.027	0.929		

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u

Table: Gross worker flows, 1978–2019

Tο

From	E	TL	JL	N	
E	0.955	0.005	0.011	0.029	
TL	0.435	0.245	0.191	0.129	
JL	0.244	0.022	0.475	0.259	
Ν	0.043	0.001	0.027	0.929	

Pr(TL-to-E) > Pr(JL-to-E) due to recall

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate

Table: Transitions from JL, TL, and JL-from-TL, 1978–2019

	X	Pr(X to E)
(a)	JL	0.244
(b)	TL	0.420
(c)	JL (TL distr.)	0.213
(d)	TL-JL	0.264

Note: Transition probabilities not adjusted for time aggregation.

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:

Table: Cyclical properties, gross worker flows

	$p_{E,TL}$				$p_{TL,JL}$
std(x)/std(Y)	11.325	5.257	6.266	6.650	10.119
corr(x, Y)	-0.494	-0.683	0.620	0.784	-0.301

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL

Table: Cyclical properties, gross worker flows

	$p_{E,TL}$	$p_{E,JL}$	$p_{\mathit{TL},E}$	$p_{JL,E}$	$p_{TL,JL}$
std(x)/std(Y)	11.325	5.257	6.266	6.650	10.119
corr(x, Y)	-0.494	-0.683	0.620	0.784	-0.301

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment

Table: Cyclical properties, gross worker flows

	$p_{E,TL}$	$p_{E,JL}$	$p_{TL,E}$	$p_{JL,E}$	$p_{TL,JL}$
std(x)/std(Y)	11.325	5.257	6.266	6.650	10.119
corr(x, Y)	-0.494	-0.683	0.620	0.784	-0.301

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment
 - 4.3 More workers move from u_{TL} to u_{JL} (loss-of-recall)

Table: Cyclical properties, gross worker flows

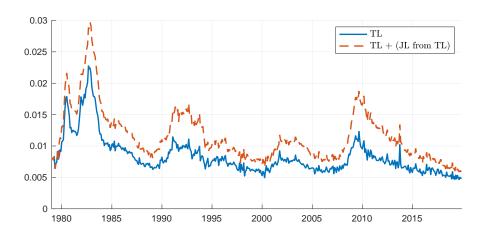
	$p_{E,TL}$	$p_{E,JL}$	$p_{\mathit{TL},E}$	$p_{JL,E}$	$p_{TL,JL}$
std(x)/std(Y)	11.325	5.257	6.266	6.650	10.119
corr(x, Y)	-0.494	-0.683	0.620	0.784	-0.301

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment
 - 4.3 More workers move from u_{TL} to u_{JL} (loss-of-recall)

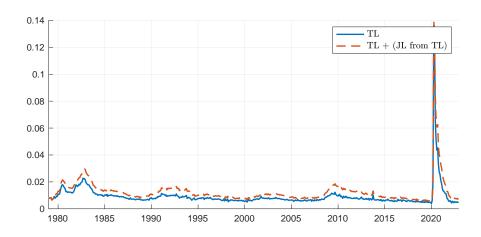
Direct effect:
$$p_{E,TL} \uparrow \& p_{TL,E} \downarrow \Rightarrow u_{TL} \uparrow$$

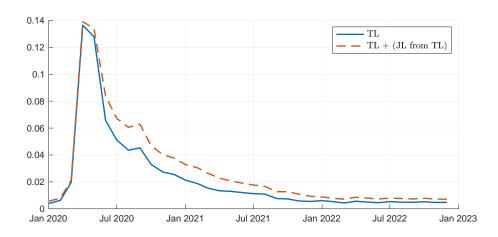
Indirect effect: $p_{E,TL} \uparrow \& p_{TL,JL} \uparrow \Rightarrow u_{JL\text{-from-}TL} \uparrow$

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment
 - 4.3 More workers move from u_{TL} to u_{JL} (loss-of-recall)
- 5. We develop methods to estimate the *indirect effect*, i.e. JL-from-TL

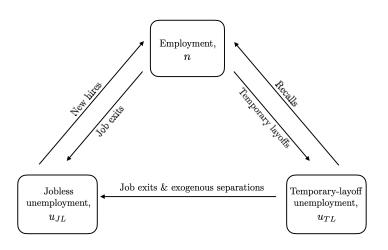

► Estimation equations

Direct effect: $p_{E,TL} \uparrow \& p_{TL,E} \downarrow \Rightarrow u_{TL} \uparrow$ Indirect effect: $p_{E,TL} \uparrow \& p_{TL,JL} \uparrow \Rightarrow u_{JL\text{-from-}TL} \uparrow$


Temporary-Layoff Unemployment *u_{TL}*: 1979-2019


Temporary-Layoff Unemployment u_{TL} + " u_{JL} from u_{TL} ": 1979-2019

Temporary-Layoff Unemployment u_{TL} + " u_{JL} from u_{TL} ": 1979+



Temporary-Layoff Unemployment u_{TL} + " u_{JL} from u_{TL} ": 2020+

Model

Model

Model

Starting point: RBC model with search and matching

- ► Perfect consumption insurance
- Wage rigidity via staggered Nash wage bargaining

Key variations:

- Endog. separations into temporary-layoff unemp.
- Recall hiring from temporary-layoff unemployment
- Endogenous separations into jobless unemployment
 - Allow for temporary paycuts: avoid inefficient separations
 - ▶ Permanent sep. triggers $u_{TL} \rightarrow u_{JL}$ for some workers
- Hiring from jobless unemployment

Details of Model

- Unemployed are either in
 - JL: Searching for work in a DMP-style matching market
 - TL: Waiting for recall or loss-of-recall Searchers, Matching and Recalls
- Firms, w/ CRS technology in labor and capital, draws cost shocks
 - ▶ Worker-specific overhead costs ⇒ separations to TL
 - Overhead costs to entire firm ⇒ separations to JL and JL-from-TL

```
▶ Production technology▶ Overhead Costs
```

- After separations: firms rent capital, hire from JL, and recall from TL
 - ► Separate hiring costs: recalls less expensive than new hiring

```
► Timing ► Hiring and recalls ► Temporary Layoffs ► Firm Exits
```

- Base wages set via staggered Nash bargaining

Model Evaluation

Calibration

- Calibrate model to match standard labor market stocks and flows...
 - Plus characteristics of temporary layoff, recall, and loss-of-recall
- Nested, two-stage estimation of 18 parameters
 - ► Inner loop: long-run moments
 - Outer loop: business cycle features

```
► Assigned Parameters ► Estimated Parameters - Inner Loop ► Estimated Parameters - Outer Loop
```

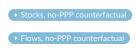
- Where we tie our hands:
 - Not a small-surplus calibration
 - Wage rigidity to match evidence on contract duration
 - Temporary paycuts can undo wage rigidity
- Model does well!

► Loss-of-Recall

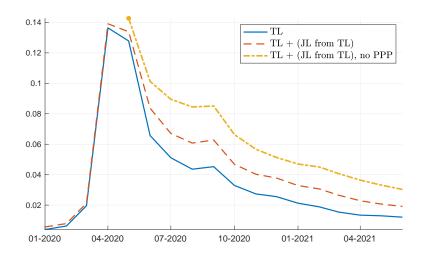
Application to the Covid-19 Recession

Adapting the Model to the Covid-19 Recession

- Introduce two shocks:
 - "Lockdown" shocks: workers move to lockdown-TL (MIT shock)
 - Persistent shocks to effective TFP w/ each wave (social distancing)
- Add two parameters specific to workers on lockdown-TL:
 - Allow for different recall cost (vs. regular-TL)
 - Allow for different rate for loss-of-recall (vs. regular-TL)
- Treatment of PPP:
 - Direct factor payment subsidy, à la Kaplan, Moll, Violante (2020)
 - Pre-announcement: program is unexpected
 - Post-announcement: availability of funds is known
- Estimate shocks & parameters to match stocks & flows Details Destinates


No-PPP Counterfactual

Q: What did PPP do?


Keep decision rules, parameters, and shocks, but remove PPP

A: Saved a lot of worker/job matches!

- ▶ Average monthly employment gains of \approx 2.14 p.p. in first 6 months
- Doubled cumulative number of recalls over the same period
- Achieved through reduction of loss-of-recall

Counterfactual: JL-from-TL without PPP

Conclusion

Concluding Remarks

Three Directions for Further Work

1. Match-specific capital

- Recalls preserve match-specific capital
- Thus, interesting to consider heterogenous match quality

2. Reallocation

- Evidence that smaller firms benefited more from PPP
- PPP might have hindered efficient reallocation

3. Employment policies in the EA

- EA has similar labor market institutions to "US-TL" (but recorded as emp)
- Similarly aggressive policies to stabilize "EA-TL"
- A rose by another name?

Supplementary Slides

Estimating JL-from-TL

Use accumulation equations:

$$u_{JL\text{-from-}TL,t} = \sum_{j=0}^{T} e'_{JL} \mathbf{X}_{t-j-1,t}$$

where $x_{t-j-1,t}$ is the distribution of workers at time t whose last exit from employment was for u_{TL} at time t-j-1, s.t.

$$x_{t-m,t-j} = \tilde{P}_t x_{t-m,t-j-1}$$

 $x_{t-m,t-m} = e_{TL} \cdot (n_{t-m-1}^E \cdot p_{t-m}^{E,TL})$

- ▶ Relatively small: u_{JL-from-TL} is 40% of u_{TL}
- \blacktriangleright Highly volatile: twice as volatile as total unemployment, $16 \times$ as GDP

Model: Full Slides

Searchers, Matching and Recalls

- Jobless unemployment (DMP matching market)
 - New hires *m* from *JL* unemployment

$$m = \sigma_m(u_{JL})^{\sigma}(v)^{1-\sigma}$$

Job finding and job filling probabilities p and q, hiring rate x

$$p = \frac{m}{u_{,II}}, \quad q = \frac{m}{v}, \quad x = \frac{m}{\mathcal{F}n}$$

- Temporary-layoff unemployment
 - Recalls m_r from TL unemp., recall probability p_r , recall hiring rate x_r

$$m_r = p_r u_{TL}, \quad x_r = \frac{m_r}{\mathcal{F}n}$$

▶ Workers in $TL \rightarrow JL$ w/ prob. $1 - \rho_r$ or if firm exits, w/ prob. $1 - \mathcal{G}$

Firms (or plants, shifts, production units, etc.)

- Firms are "large", i.e., hire a continuum of workers
 - Firm, or establishment, or assembly line, etc.
- CRS technology

$$y = zk^{\alpha}(\mathcal{F}n)^{1-\alpha}$$

- $ightharpoonup n \equiv$ beginning of period employment
- $ightharpoonup \mathcal{F} \equiv$ fraction of workers not on temporary layoff
- Given CRS technology, firm decisions scale independent

Overhead Costs: Temporary versus Permanent Layoffs

- $\gamma \equiv i.i.d.$ firm-specific cost shock
- $\vartheta \equiv i.i.d.$ worker-specific cost shock
 - Non-exiting firms ($\gamma < \gamma^*$) pay overhead costs to operate:

$$\varsigma(\gamma, \vartheta^*) n = \left[\varsigma_{\gamma} \gamma + \varsigma_{\vartheta} \int^{\vartheta^*} \vartheta d\mathcal{F}(\vartheta) \right] n$$
$$\mathcal{F}(\vartheta^*) = \Pr\{\vartheta \leq \vartheta^*\} \qquad \mathcal{G}(\gamma^*) = \Pr\{\gamma \leq \gamma^*\}$$

- ▶ Temporary layoffs: each worker draws ϑ
 - ▶ Workers w/ $\vartheta \ge \vartheta^*$ (endog. thresh.) go on temporary layoff
- ightharpoonup Permanent layoffs: firms draw γ
 - Firm operates if $\gamma < \gamma^*$ (endog. thresh.); otherwise exits

 \bigcirc

Timing of Events

- 1. Firm enters period with stock of workers *n*
- 2. Aggregate shock revealed
- 3. Firms and workers bargain over base wages w
- 4. Firms assigns $1 \mathcal{F}(\vartheta^*)$ workers to temporary layoff
- 5. Firm-specific shock γ revealed
 - ▶ If $\gamma \ge \gamma^*$ → firm exits, employed workers move to u_{JL}
 - Firm's workers in u_{TL} move to u_{JL}
 - ▶ If $\gamma < \gamma^* \rightarrow$ firm continues
 - Rents capital and produces output
 - \blacktriangleright Hires workers from u_{JL} , recalls workers from u_{TL}
 - Possibility of temporary paycuts, i.e. remitted wages $\omega < w$

Timing of Events

- 1. Firm enters period with stock of workers *n*
- 2. Aggregate shock revealed
- 3. Firms and workers bargain over base wages w
- 4. Firms assigns $1 \mathcal{F}(\vartheta^*)$ workers to temporary layoff
- 5. Firm-specific shock γ revealed
 - ▶ If $\gamma \ge \gamma^*$ → firm exits, employed workers move to u_{JL}
 - Firm's workers in u_{TL} move to u_{JL}
 - ▶ If $\gamma < \gamma^* \rightarrow$ firm continues
 - Rents capital and produces output
 - ▶ Hires workers from u_{JL} , recalls workers from u_{TL}
 - Possibility of temporary paycuts, i.e. remitted wages $\omega < w$

Solve backwards

Firm Problem (at non-exiting firms w/ TL policy ϑ^*)

$$J(\boldsymbol{w}, \gamma, \mathbf{s}) = \max_{\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{k}} \left\{ z \boldsymbol{k}^{\alpha} \left[\mathcal{F}(\vartheta^*) \right]^{1-\alpha} - \omega \left(\boldsymbol{w}, \gamma, \mathbf{s} \right) \mathcal{F}(\vartheta^*) - r \boldsymbol{k} \right.$$

$$\left. - \left(\iota(\boldsymbol{x}) \mathcal{F}(\vartheta^*) + \iota_r(\boldsymbol{x}_r) \mathcal{F}(\vartheta^*) \right) - \varsigma(\vartheta^*, \gamma) \right.$$

$$\left. + \mathcal{F}(\vartheta^*) \left(1 + \boldsymbol{x} + \boldsymbol{x}_r \right) \mathbb{E} \left\{ \Lambda(\mathbf{s}, \mathbf{s}') \mathcal{J}(\boldsymbol{w}', \mathbf{s}') |, \boldsymbol{w}, \mathbf{s} \right\} \right\}$$

$$\left. \varsigma(\gamma, \vartheta^*) = \varsigma_{\gamma} \gamma + \varsigma_{\vartheta} \int_{-\vartheta^*}^{\vartheta^*} \vartheta d\mathcal{F}(\vartheta) \right.$$

$$\left. \iota(\boldsymbol{x}) = \chi \boldsymbol{x} + \frac{\kappa}{2} \left(\boldsymbol{x} - \tilde{\boldsymbol{x}} \right)^2, \quad \iota_r(\boldsymbol{x}_r) = \chi \boldsymbol{x}_r + \frac{\kappa_r}{2} \left(\boldsymbol{x}_r - \tilde{\boldsymbol{x}}_r \right)^2$$

$$\left. \mathcal{J}(\boldsymbol{w}, \mathbf{s}) = \max_{\vartheta^*} \int_{-\vartheta^*}^{\vartheta^*} J(\boldsymbol{w}, \gamma, \mathbf{s}) d\mathcal{G}(\gamma) \right.$$

with

Hiring and Recall (at non-exiting firms w/ TL policy ϑ^*)

► FOC's for hiring and recall:

$$\chi + \kappa \left(\mathbf{X} - \tilde{\mathbf{X}} \right) = \mathbb{E} \left\{ \Lambda(\mathbf{s}, \mathbf{s}') \mathcal{J} \left(\mathbf{w}', \mathbf{s}' \right) | \mathbf{w}, \mathbf{s} \right\}$$
 (Optimal hiring)
$$\chi + \kappa_r \left(\mathbf{X}_r - \tilde{\mathbf{X}}_r \right) = \mathbb{E} \left\{ \Lambda(\mathbf{s}, \mathbf{s}') \mathcal{J} \left(\mathbf{w}', \mathbf{s}' \right) | \mathbf{w}, \mathbf{s} \right\}$$
 (Optimal recall)

Calibrated model (and data):

$$\frac{\chi}{\underbrace{\kappa_{\textit{r}} \cdot \textit{X}_{\textit{r}}}} > \underbrace{\frac{\chi}{\kappa \cdot \textit{X}}}_{\text{Recall elasticity}} > \underbrace{\frac{\chi}{\kappa \cdot \textit{X}}}_{\text{New hire elasticity}}$$

▶ Relation of $\{x, x_r\}$ to job-finding/recall probabilities $\{p, p_r\}$:

$$\mathbf{x} = \frac{p u_{JL}}{\mathcal{F}(\vartheta^*) n}, \quad \mathbf{x}_r = \frac{p_r u_{TL}}{\mathcal{F}(\vartheta^*) n}$$

Temporary Layoffs

Firm must pay overhead costs to continue to operate:

$$\varsigma(\gamma, \vartheta^*) = \varsigma_\gamma \gamma + \varsigma_\vartheta \int^{\vartheta^*} \vartheta d\mathcal{F}(\vartheta)$$

▶ FOC for optimal ϑ determines TL threshold ϑ^* :

$$\underbrace{\mathcal{J}(\mathbf{W},\mathbf{S}) + \varsigma_{\gamma}\Gamma + \varsigma_{\vartheta}\mathcal{G}\left(\gamma^{*}\right)\Theta}_{\text{Expected job value net of period overhead costs}} = \underbrace{\varsigma_{\vartheta}\vartheta^{*}\mathcal{F}(\vartheta^{*})\mathcal{G}\left(\gamma^{*}\right)}_{\text{Marginal overhead costs}}$$

- $ightharpoonup \mathcal{J}(w, \mathbf{s}) \equiv \text{expected job value}$
- $ightharpoonup \Gamma \equiv \int^{\gamma^*} \gamma d\mathcal{G}(\gamma)$
- ightharpoons $\Theta \equiv \int^{\vartheta^*} \vartheta d\mathcal{F}(\vartheta)$

Firm Exits

- \triangleright Given cost shock γ and base wage w, allow temp. paycuts to avoid exit
- ► Shutdown threshold γ^* solves $J(\underline{w}, \gamma^*, \mathbf{s}) = 0$
 - ► $J(w, \gamma, \mathbf{s}) \equiv \text{job value}$
 - $ightharpoonup \underline{w} \equiv \text{reservation wage}$
- Paycut threshold $\gamma^{\dagger} \in (0, \gamma^*)$ solves $J(w, \gamma^{\dagger}, \mathbf{s}) = 0$
 - ▶ Paycut wage keeps zero firm surplus for $\gamma \in (\gamma^{\dagger}, \gamma^*)$
- ▶ Firm's active labor force + workers on TL go to JL upon exit

Workers (1/2)

Value of work

$$\label{eq:V(w, gamma, s) = omega} V(\textit{w}, \textit{g}, \textit{s}) = \omega\left(\textit{w}, \textit{g}, \textit{s}\right) + \mathbb{E}\left\{\Lambda\left(\textit{s}, \textit{s}'\right)\mathcal{V}(\textit{w}', \textit{s}') | \textit{w}, \textit{s}\right\},$$

with

$$egin{aligned} \mathcal{V}(m{w},m{s}) &= \mathcal{F}(artheta^*) \left[\int^{\gamma^*} V\left(m{w},\gamma,m{s}
ight) d\mathcal{G}(\gamma) + \left(1-\mathcal{G}(\gamma^*)
ight) U_{JL}(m{s})
ight] \ &+ \left(1-\mathcal{F}(artheta^*)
ight) \mathcal{U}_{TL}(m{w},m{s}) \end{aligned}$$

where

- $ightharpoonup U_{JL}(\mathbf{s})$ is the value of jobless unemployment
- $ightharpoonup \mathcal{U}_{TL}$ is the expected value of temporary-layoff unemployment
- $\triangleright \ \omega(\mathbf{w}, \gamma, \mathbf{s})$ are remitted wages

Workers (2/2)

Value of jobless unemployment

$$U_{JL}(\mathbf{s}) = b + \mathbb{E}\left\{\Lambda\left(\mathbf{s}, \mathbf{s}'\right) \left[\rho \bar{V}_{x}\left(\mathbf{s}'\right) + (1-\rho) U_{JL}\left(\mathbf{s}'\right)\right] | \mathbf{s} \right\}$$
 where \bar{V}_{x} is the expected value of being a new hire

Value of temporary-layoff unemployment

$$egin{aligned} U_{TL}(oldsymbol{w},oldsymbol{s}) &= b + \mathbb{E}\left\{\Lambda\left(oldsymbol{s},oldsymbol{s}'
ight) \left[p_r \mathcal{V}\left(oldsymbol{w}',oldsymbol{s}'
ight)
ight. \\ &+ \left. \left(1-p_r
ight)
ho_r \mathcal{U}_{TL}\left(oldsymbol{w}',oldsymbol{s}'
ight)
ight. \\ &+ \left. \left(1-p_r
ight) \left(1-\rho_r
ight) \mathcal{U}_{JL}\left(oldsymbol{s}'
ight)
ight] \left|oldsymbol{w},oldsymbol{s}
ight\}. \end{aligned}$$

with

$$\mathcal{U}_{\textit{TL}}(\textit{w}, \textit{s}) = \mathcal{G}\left(\gamma^*\right) \textit{U}_{\textit{TL}}\left(\textit{w}, \textit{s}\right) + \left(1 - \mathcal{G}(\gamma^*)\right) \textit{U}_{\textit{JL}}\left(\textit{s}\right).$$

Staggered Nash Wage Bargaining

- **Each** period, probability 1λ of renegotiating base wage
- lacktriangle Parties bargain over surpluses prior to realization of γ
 - ▶ Worker surplus: $\mathcal{H}(w, \mathbf{s}) \equiv \mathcal{V}(w, \mathbf{s}) U_{JL}(\mathbf{s})$
 - Firm surplus: $\mathcal{J}(w, \mathbf{s}) \equiv \max_{\vartheta^*} \int^{\gamma^*} J(w, \mathbf{s}) d\mathcal{G}(\gamma)$
- Contract wage w* solves

$$\max_{\boldsymbol{w}^*} \mathcal{H}(\boldsymbol{w}, \mathbf{s})^{\eta} \mathcal{J}(\boldsymbol{w}, \mathbf{s})^{1-\eta}$$

subject to

$$w' = \begin{cases} w \text{ with probability } \lambda \\ w^{*'} \text{ with probability } 1 - \lambda \end{cases}$$

and to wage cut policy

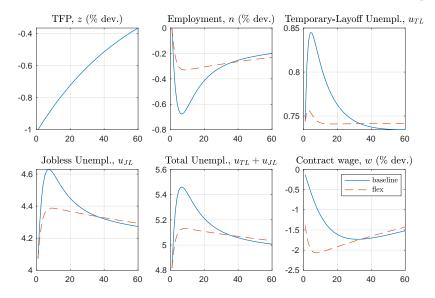
Model Evaluation: Full Slides

Calibration: Assigned Parameters

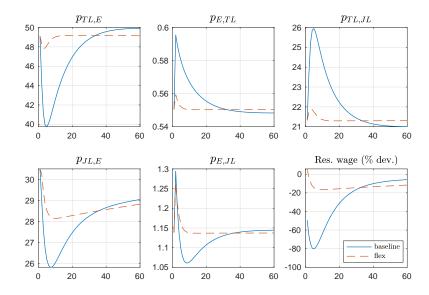
Parameter values					
Discount factor	β	$0.997 = 0.99^{1/3}$			
Autoregressive parameter, LP	$ ho_{z}$	$0.99^{1/3}$			
Standard deviation, LP	$\sigma_{\it z}$	0.007			
Elasticity of matches to searchers	σ	0.5			
Bargaining power parameter	η	0.5			
Matching function constant	$\sigma_{\it m}$	1.0			
Renegotiation frequency	λ	8/9 (3 quarters)			

Calibration: Estimated Parameters (inner loop)

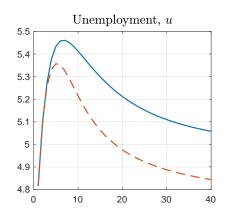
Parameter	Description	Value	Target
χ	Scale, hiring costs	1.1779	Average <i>JL</i> -to- <i>E</i> rate (0.303)
$arsigma_{artheta}\cdot oldsymbol{e}^{\mu_{artheta}}$	Scale, overhead costs, worker	1.8260	Average <i>E</i> -to- <i>TL</i> rate (0.005)
$arsigma_{\gamma}\cdot m{e}^{\mu_{\gamma}}$	Scale, overhead costs, firm	0.3599	Average <i>E</i> -to- <i>JL</i> rate (0.011)
$1- ho_r$	Loss of recall rate	0.3858	Average <i>TL</i> -to- <i>JL</i> rate (0.207)
b	Flow value of unemp.	0.9834	Rel. flow value non-work (0.71)

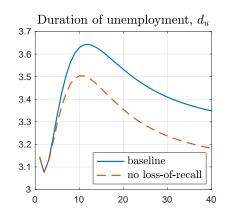

Calibration: Estimated Parameters (outer loop)

Parameter	Description	Value
$\chi/(\kappa \tilde{x})$	Hiring elasticity, new hires	0.45
$\chi/(\kappa_r \tilde{x}_r)$	Hiring elasticity, recalls	0.94
$\sigma_{artheta}$	Parameter lognormal ${\mathcal F}$	1.65
σ_{γ}	Parameter lognormal ${\cal G}$	0.37


Moment	Target	Model
SD of hiring rate	3.35	3.32
SD of total separation rate	5.21	4.51
SD of temporary-layoff unemployment, u_{TL}	9.71	9.85
SD of jobless unemployment, u_{JL}	8.57	9.77
SD of hiring rate from u_{JL} relative to u_{TL}	0.47	0.47

TFP Shock: Employment, Unemployment and Wages




TFP Shock: Transition Probabilities

TFP Shock: Shut off u_{JL} from u_{TL}

 Loss of recall increases response of unemployment and generates duration dependence

Application to Covid-19 Recession:

Full Slides

Adapting the Model to the Covid-19 Recession

Introduce series of shocks and two parameters

1. Shocks:

- "Lockdown" shocks
 - ▶ Beginning of period: fraction 1ν move to TL unemp
 - Unanticipated (MIT shock)
- Utilization restrictions on capital and labor
 - Transitory shock at start of pandemic
 - New persistent shock with each Covid wave
- PPP as factor payment subsidy (as in KMV)
 - ▶ PPP 2020: 12.5% of quarterly GDP, most payments May-July 2020
 - PPP 2021: 5.4% of quarterly GDP, most payments Jan-April 2021

Adapting the Model to the Covid-19 Recession, cont.

• • •

2. Two parameters:

(Possibly) reduced recall costs for workers in lockdown

$$\chi X_r + \frac{\kappa_r}{2} \left(X_r - \xi \underbrace{\frac{(1 - \phi)u_{TL}}{\mathcal{F}(\vartheta^*)n}}_{\text{Workers on lockdown}} - \tilde{X}_r \right)^2$$

- $ightharpoonup 0 \le \xi \le 1$
- ▶ Different rate of exog. TL-to-JL for workers on lockdown, $1 \rho_{r\phi}$

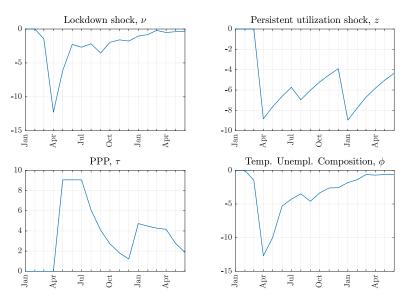
Recession Experiment

- ► Thus, need to estimate:
 - 1. Lockdown shocks for each month of pandemic (+T)
 - 2. Size of persistent utilization shock for three waves (+3)
 - 3. Autoregressive parameter of persistent utilization shock (+1)
 - 4. Two model parameters (+2)
- Moments to match:
 - 1. Stocks: $\{u_{TL}, u_{JL}\}_{\tau}$ since onset of pandemic
 - 2. Gross flows: $\{g_{E,TL}, g_{TL,E}, g_{TL,JL}\}_{\tau}$ since onset
 - 3. Inflows into u_{JL} : March-April 2020 only

Recession Experiment, cont.

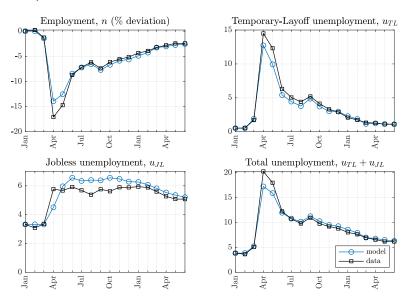
- Estimate by SMM:
 - T months of pandemic w/ 3 waves
 - \triangleright (5 · T + 1) moments to match
 - ightharpoonup (T+6) parameters to estimate
 - Overidentified system

Parameter and Shock Estimates

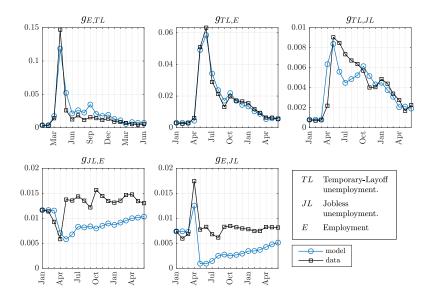

Parameters

Variable	Description	Value
$ ho_Z$	Autoregressive coefficient for persistent utilization shocks	0.866
ξ	Adjustment costs for workers on lockdown	0.499
$1- ho_{r\phi}$	Probability of exogenous loss of recall for workers in temporary unemployment	0.384

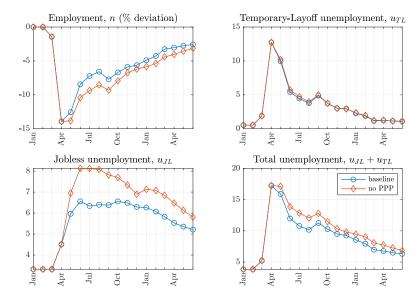
Shocks


Description	Value
Persistent utilization shock, April 2020	-8.83%
Persistent utilization shock, September 2020	-1.99%
Persistent utilization shock, January 2021	-5.58%

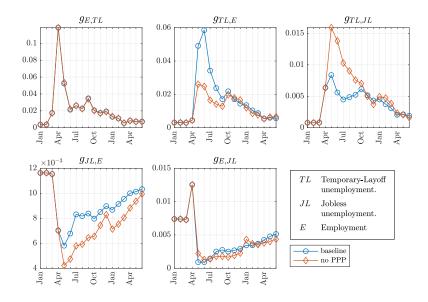
Parameter and Shock Estimates, cont.



Covid Onset, Stocks



Covid Onset, Gross Flows



Policy Counterfactual: No PPP, stocks

Policy Counterfactual: No PPP, flows

PPP takeaway

- PPP achieved sizeable employment gains
- Immediate term: May to September 2020
 - Achieved average monthly employment gains of 2.14%
 - Doubled cumulative recalls
- Longer term
 - Smaller persistent employment gains
 - Avg. monthly empl. at least 1% higher through May 2021
- Employment gains came from recalls
 - ▶ PPP preserved ties btwn firms and workers in u_{TL}
 - Fulfilled mandate

Unemployment during Covid: US vs. EA

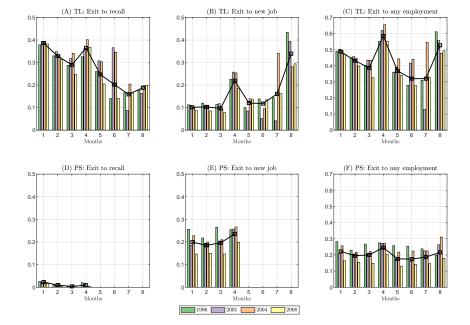
- Unemployment measured differently, e.g. temporary laid off workers
- ► Temporary laid off workers counted among the unemployed in the US and among the employed in the EA
- 2 counterfactual scenarios:
 - 1. TL counted among the employed also in the US (middle panel)
 - 2. TL counted among the unemployed also in the EA (right panel)
- But differences exist in TL definitions: more attachment to job in EA

■ Back

Recall from TL and PS: Evidence from the SIPP

- ▶ Look at EUE spells in 1996+ SIPP w/ U duration < 4 months
 - ► e.g., E-U-E, E-U-U-E, E-U-U-E, & E-U-U-U-E
- Compute re-employment hazards for recall and new-job-finding, & separately for temporary layoffs (TL) and permanent separations (PS)
- ► Recall is overwhelmingly concentrated among workers from TL:
 - ▶ 76.3% of TL's end in recall (versus a new job)
 - 6.4% of PS's end in recall (versus a new job)

Recall from TL and PS: Evidence from the SIPP


Table: Recall shares from unemployment by reason for job loss

	SIPP panels				
Reason for job loss:	All	1996	2001	2004	2008
Temporary layoff	0.763	0.740	0.754	0.766	0.782
Permanent separation	0.064	0.063	0.068	0.080	0.047

Note: Sample consists of workers moving from employment to unemployment via either permanent separation or temporary layoff who (i) return to employment in four months or less, and (ii) actively search for all months that they are non-employed (e.g., are unemployed).

Recall from TL and PS: Evidence from the SIPP

JL-from-TL and controls for unemployment duration

Table: Transitions from JL, TL, and JL-from-TL, 1978-2019

	(a)	(b)	(c)	(d)	(e)	(f)
X	JL	TL	TL-JL	JL, TL distribution	E-JL-JL	E-TL-TL
Pr(X to E)	0.245	0.442	0.264	0.213	0.278	0.390

