The Labor Demand and Labor Supply Channels of Monetary Policy

Sebastian Graves¹, Christopher Huckfeldt², and Eric Swanson³

University of Cambridge
 Federal Reserve Board
 UC Irvine & NBER

November 12, 2025

Midwest Macro Cleveland

The views expressed in this paper/presentation are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or any other person associated with the Federal Reserve System.

- Study response of labor market flows to identified monetary policy shocks
 - Estimate impulse responses from proxy SVAR with HFI monetary policy shocks à la Gertler and Karadi (2015)
 - ▶ Shocks from Bauer and Swanson (2023), Swanson and Jayawickrema (2025)

- Study response of labor market flows to identified monetary policy shocks
 - Estimate impulse responses from proxy SVAR with HFI monetary policy shocks à la Gertler and Karadi (2015)
 - ▶ Shocks from Bauer and Swanson (2023), Swanson and Jayawickrema (2025)
- Focus on response of supply-driven labor market flows:
 - ► Flows between unemployment (U) and nonparticipation (N)
 - Quits from employment (E) to non-employment
 - New decomposition of E-to-N flows into quits/layoffs

- Study response of labor market flows to identified monetary policy shocks
 - Estimate impulse responses from proxy SVAR with HFI monetary policy shocks à la Gertler and Karadi (2015)
 - ▶ Shocks from Bauer and Swanson (2023), Swanson and Jayawickrema (2025)
- Focus on response of supply-driven labor market flows:
 - ► Flows between unemployment (U) and nonparticipation (N)
 - Quits from employment (E) to non-employment
 - New decomposition of E-to-N flows into quits/layoffs
- After contractionary monetary policy shock:
 - ► Heightened job-search by non-employed: U-to-N rate ↓ & N-to-U rate ↑
 - Quit rate to non-employment \(\psi \)

- Study response of labor market flows to identified monetary policy shocks
 - Estimate impulse responses from proxy SVAR with HFI monetary policy shocks à la Gertler and Karadi (2015)
 - ▶ Shocks from Bauer and Swanson (2023), Swanson and Jayawickrema (2025)
- Focus on response of supply-driven labor market flows:
 - ► Flows between unemployment (U) and nonparticipation (N)
 - Quits from employment (E) to non-employment
 - New decomposition of E-to-N flows into quits/layoffs
- After contractionary monetary policy shock:
 - ► Heightened job-search by non-employed: U-to-N rate ↓ & N-to-U rate ↑
 - Quit rate to non-employment \(\psi \)
- Apply standard accounting framework: Response of employment twice as large holding supply-driven flows fixed

- What do IRFs of supply-driven flows say about labor supply response to a monetary policy shock?
 - Change in composition, or broad-based increase in labor supply?

- What do IRFs of supply-driven flows say about labor supply response to a monetary policy shock?
 - Change in composition, or broad-based increase in labor supply?
- ➤ To answer, we study heterogeneous agent model with labor market frictions and endogenous participation à la Krusell et al. (2017)
- Estimate key parameters to match response of labor market flows to "monetary policy shock"
 - ▶ Study by feeding in responses for layoff rate, job-finding rate, interest rate and wages

- What do IRFs of supply-driven flows say about labor supply response to a monetary policy shock?
 - Change in composition, or broad-based increase in labor supply?
- ➤ To answer, we study heterogeneous agent model with labor market frictions and endogenous participation à la Krusell et al. (2017)
- Estimate key parameters to match response of labor market flows to "monetary policy shock"
 - ▶ Study by feeding in responses for layoff rate, job-finding rate, interest rate and wages
- ► Model achieves close fit for aggregate labor market flows
 - ► Also consistent with micro evidence on MPCs and MPEs

- What do IRFs of supply-driven flows say about labor supply response to a monetary policy shock?
 - Change in composition, or broad-based increase in labor supply?
- ► To answer, we study heterogeneous agent model with labor market frictions and endogenous participation à la Krusell et al. (2017)
- Estimate key parameters to match response of labor market flows to "monetary policy shock"
 - ▶ Study by feeding in responses for layoff rate, job-finding rate, interest rate and wages
- Model achieves close fit for aggregate labor market flows
 - ► Also consistent with micro evidence on MPCs and MPEs
- Model implies quantitatively important labor supply response:
 Fix labor supply policy functions at steady-state, employment falls ≈ 70% more

- What do IRFs of supply-driven flows say about labor supply response to a monetary policy shock?
 - Change in composition, or broad-based increase in labor supply?
- ➤ To answer, we study heterogeneous agent model with labor market frictions and endogenous participation à la Krusell et al. (2017)
- Estimate key parameters to match response of labor market flows to "monetary policy shock"
 - ▶ Study by feeding in responses for layoff rate, job-finding rate, interest rate and wages
- Model achieves close fit for aggregate labor market flows
 - ► Also consistent with micro evidence on MPCs and MPEs
- Model implies quantitatively important labor supply response: Fix labor supply policy functions at steady-state, employment falls $\approx 70\%$ more
- ► Mechanism: Relative value of non-employment falls with job-finding rate

- ► Conventional wisdom: monetary policy affects employment through labor demand
 - Little role (if any!) for labor supply

- Conventional wisdom: monetary policy affects employment through labor demand
 - Little role (if any!) for labor supply
- Many NK models imply no short-run effect of labor supply on employment
 - ► Sticky wages + neoclassical labor market ⇒ employment is demand-determined
 - ▶ E.g. Gali, Smets, and Wouters (2011), Broer et al (2020), Wolf (2023)
 - NK + search-and-matching ⇒ labor supplied inelastically
 - ▶ E.g. Gertler, Sala, and Trigari (2008), Christiano, Eichenbaum, and Trabandt (2016)

- Conventional wisdom: monetary policy affects employment through labor demand
 - Little role (if any!) for labor supply
- Many NK models imply no short-run effect of labor supply on employment
 - Sticky wages + neoclassical labor market ⇒ employment is demand-determined
 - ▶ E.g. Gali, Smets, and Wouters (2011), Broer et al (2020), Wolf (2023)
 - NK + search-and-matching ⇒ labor supplied inelastically
 - ▶ E.g. Gertler, Sala, and Trigari (2008), Christiano, Eichenbaum, and Trabandt (2016)
- ► This paper: New evidence that decline in employment from a contractionary monetary policy shock significantly attenuated by increase in labor supply

- Conventional wisdom: monetary policy affects employment through labor demand
 - Little role (if any!) for labor supply
- Many NK models imply no short-run effect of labor supply on employment
 - ► Sticky wages + neoclassical labor market ⇒ employment is demand-determined
 - ▶ E.g. Gali, Smets, and Wouters (2011), Broer et al (2020), Wolf (2023)
 - NK + search-and-matching ⇒ labor supplied inelastically
 - ▶ E.g. Gertler, Sala, and Trigari (2008), Christiano, Eichenbaum, and Trabandt (2016)
- ► This paper: New evidence that decline in employment from a contractionary monetary policy shock significantly attenuated by increase in labor supply
- Potentially relevant for understanding post-Covid period: large fiscal transfers to households, quits ↑, labor force participation ↓, inflation ↑

Data & Methodology

Labor Market Flows

- ▶ Time series data on labor market flows from CPS microdata
- ▶ Three states: employment (E), unemployment (U), nonparticipation (N)

Labor Market Flows

- Time series data on labor market flows from CPS microdata
- ► Three states: employment (E), unemployment (U), nonparticipation (N)
- ▶ Interpret dynamics of labor market stocks through response of flows:

$$\begin{bmatrix} E \\ U \\ N \end{bmatrix}_{t+1} = \begin{bmatrix} 1 - p_{EU} - p_{EN} & p_{UE} & p_{NE} \\ p_{EU} & 1 - p_{UE} - p_{UN} & p_{NU} \\ p_{EN} & p_{UN} & 1 - p_{NE} - p_{NU} \end{bmatrix}_{t+1} \begin{bmatrix} E \\ U \\ N \end{bmatrix}_{t}$$

Labor Market Flows

- ▶ Time series data on labor market flows from CPS microdata
- ► Three states: employment (E), unemployment (U), nonparticipation (N)
- ▶ Interpret dynamics of labor market stocks through response of flows:

$$\begin{bmatrix} E \\ U \\ N \end{bmatrix}_{t+1} = \begin{bmatrix} 1 - p_{EU} - p_{EN} & p_{UE} & p_{NE} \\ p_{EU} & 1 - p_{UE} - p_{UN} & p_{NU} \\ p_{EN} & p_{UN} & 1 - p_{NE} - p_{NU} \end{bmatrix}_{t+1} \begin{bmatrix} E \\ U \\ N \end{bmatrix}_{t}$$

- Particular focus on response of supply-driven flows to monetary policy
 - ▶ Decision to search from non-employment, e.g. U-to-N and N-to-U
 - Quits to unemployment and nonparticipation (new!)

▶ Decomposition of EN/EU Flows

Cyclical Properties

Estimating the Effects of Monetary Policy

► Begin with reduced-form VAR:

$$Y_t = \alpha + B(L)Y_{t-1} + u_t \tag{1}$$

- Seven monthly variables for baseline specification:
 - two-year Treasury yield, log CPI, log IP, corporate bond spreads
 - unemployment rate, participation rate, log vacancies

Estimating the Effects of Monetary Policy

► Begin with reduced-form VAR:

$$Y_t = \alpha + B(L)Y_{t-1} + u_t \tag{1}$$

- Seven monthly variables for baseline specification:
 - two-year Treasury yield, log CPI, log IP, corporate bond spreads
 - unemployment rate, participation rate, log vacancies
- Assume structural shocks:

$$u_t = S\varepsilon_t \tag{2}$$

where the first structural shock is a "monetary policy shock", ε_t^{mp}

- First column of S, denoted s_1 , describes the impact effect of the structural monetary policy shock ε_t^{mp} on u_t and Y_t
- ▶ Use an external instrument z_t to identify s_1

External Instrument

 \triangleright External instrument z_t needs to satisfy:

$$\mathbb{E}\left\{ \mathbf{z}_{t} \varepsilon_{t}^{mp}
ight\}
eq 0$$
 (Relevance)
$$\mathbb{E}\left\{ \mathbf{z}_{t} \varepsilon_{t}^{-mp}
ight\} = 0$$
 (Exogeneity)

- ▶ Use HFI changes in interest rate futures as external instrument in VAR
 - e.g., Stock and Watson (2012), Gertler & Karadi (2015)

External Instrument

External instrument z_t needs to satisfy:

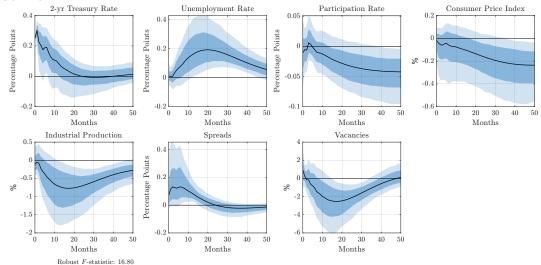
$$\mathbb{E}\left\{ \underline{z_t} \varepsilon_t^{mp} \right\} \neq 0$$
 (Relevance)

$$\mathbb{E}\left\{\mathbf{z}_{t}\varepsilon_{t}^{-mp}\right\} = 0$$
 (Exogeneity)

- Use HFI changes in interest rate futures as external instrument in VAR
 - e.g., Stock and Watson (2012), Gertler & Karadi (2015)
- Implement methodology from Bauer & Swanson (2023)
 - Use interest rate changes around FOMC announcements and Fed Chair speeches, orthogonalized with respect to recent macro/financial news
 - ▶ Both speeches and orthogonalizing necessary for accurate HFI estimates
 - Obtain similar estimates from Aruoba and Drechsel (2024) shocks

External Instrument

External instrument z_t needs to satisfy:


$$\mathbb{E}\left\{\mathbf{z}_{t}\varepsilon_{t}^{mp}\right\} \neq 0 \tag{Relevance}$$

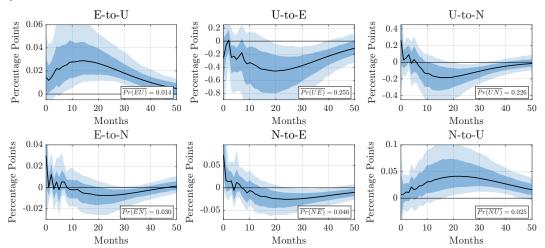
$$\mathbb{E}\left\{\mathbf{z}_{t}^{-mp}\right\} = 0 \qquad \qquad \text{(Exogeneity)}$$

- Use HFI changes in interest rate futures as external instrument in VAR
 - e.g., Stock and Watson (2012), Gertler & Karadi (2015)
- Implement methodology from Bauer & Swanson (2023)
 - Use interest rate changes around FOMC announcements and Fed Chair speeches, orthogonalized with respect to recent macro/financial news
 - ▶ Both speeches and orthogonalizing necessary for accurate HFI estimates
 - Obtain similar estimates from Aruoba and Drechsel (2024) shocks
- Labor market flows added one-by-one to the main VAR
 - Similar results from large Bayesian VAR (or local projections)

Baseline VAR

- Monthly data, 1978:M1–2019:M12
- ▶ Dark and light shaded regions report 68% and 90% confidence intervals

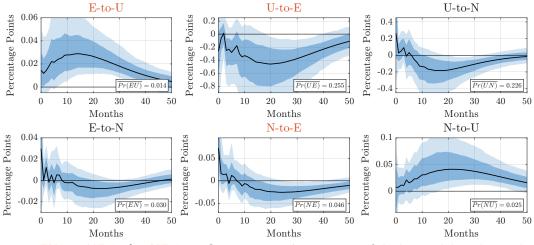
→ FOMC Announcements

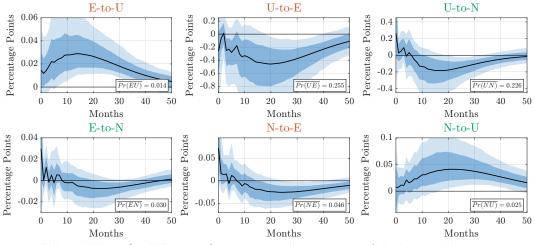

► FOMC Announcements (Orthog.)

Aruoba & Drechsel

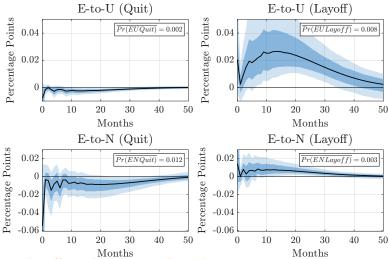
► Local Projections

▶ Bayesian VAR


Response of Labor Market Flows



Response of Labor Market Flows


▶ pEU \uparrow , pUE \downarrow , & pNE \downarrow ⇒ Consistent with narrative of decline in labor demand

Response of Labor Market Flows

- ▶ pEU \uparrow , pUE \downarrow , & pNE \downarrow ⇒ Consistent with narrative of decline in labor demand
- ▶ pNU \uparrow , pUN \downarrow , & pEN \downarrow (via quits) \Rightarrow Consistent with increase in labor supply

Response of E-to-U & E-to-N Flows: Quits vs Layoffs

- ► Increase in layoffs explains rise in E-to-U rate
- ▶ Decline in quits explains fall in E-to-N rate

► FOMC Announcements

FOMC Announcements (Orthog.

➤ Aruoba & Drechsel

► LP

After contractionary monetary policy shock we also find:

1. Increase in "intensive margins" of search from non-employment •

- 1. Increase in "intensive margins" of search from non-employment •
- 2. Decline in participation driven by labor force exit (through increase in unemployment); attenuated by increase in labor force entry •

- 1. Increase in "intensive margins" of search from non-employment •
- 2. Decline in participation driven by labor force exit (through increase in unemployment); attenuated by increase in labor force entry •
- 3. Larger response of supply-driven flows among less-educated •

- 1. Increase in "intensive margins" of search from non-employment •
- 2. Decline in participation driven by labor force exit (through increase in unemployment); attenuated by increase in labor force entry •
- 3. Larger response of supply-driven flows among less-educated •
- 4. No response of job-to-job transitions •

- 1. Increase in "intensive margins" of search from non-employment •
- 2. Decline in participation driven by labor force exit (through increase in unemployment); attenuated by increase in labor force entry •
- 3. Larger response of supply-driven flows among less-educated •
- 4. No response of job-to-job transitions 🖸
- Nominal wages decline slowly

Robustness

As robustness, we also

1. Show limited role for cyclical composition in shaping response of flow IRFs •

- 1. Show limited role for cyclical composition in shaping response of flow IRFs •
- 2. Estimate similar IRFs from
 - Aruoba/Drechsel (2025) shock series

- 1. Show limited role for cyclical composition in shaping response of flow IRFs •
- 2. Estimate similar IRFs from
 - Aruoba/Drechsel (2025) shock series
 - Aruoba/Dreschel (2025) + Swanson/Jayawickrema (2025) shocks

- 1. Show limited role for cyclical composition in shaping response of flow IRFs •
- 2. Estimate similar IRFs from
 - Aruoba/Drechsel (2025) shock series
 - Aruoba/Dreschel (2025) + Swanson/Jayawickrema (2025) shocks
 - ► Large-scale Bayesian SVAR •

- 1. Show limited role for cyclical composition in shaping response of flow IRFs •
- 2. Estimate similar IRFs from
 - Aruoba/Drechsel (2025) shock series
 - Aruoba/Dreschel (2025) + Swanson/Jayawickrema (2025) shocks
 - ► Large-scale Bayesian SVAR •
 - Local projections

- 1. Show limited role for cyclical composition in shaping response of flow IRFs •
- 2. Estimate similar IRFs from
 - Aruoba/Drechsel (2025) shock series
 - Aruoba/Dreschel (2025) + Swanson/Jayawickrema (2025) shocks
 - ► Large-scale Bayesian SVAR •
 - Local projections
- 3. Estimate qualitatively similar IRFs from "Main Business Cycle Shock" à la Angeletos et al (2020)

Using Flows to Account for Dynamics of Labor Market Stocks

 \triangleright Assess role of supply-driven flows (e.g., p_{NU}) in shaping response of employment

- \triangleright Assess role of supply-driven flows (e.g., p_{NU}) in shaping response of employment
- Recall law of motion for stocks in terms of transition probabilities (i.e., flows)

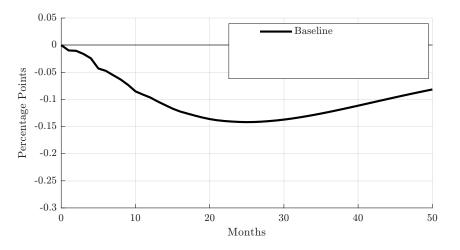
$$\begin{bmatrix} E \\ U \\ N \end{bmatrix}_{t+1} = \underbrace{\begin{bmatrix} 1 - p_{EU} - p_{EN} & p_{UE} & p_{NE} \\ p_{EU} & 1 - p_{UE} - p_{UN} & p_{NU} \\ p_{EN} & p_{UN} & 1 - p_{NE} - p_{NU} \end{bmatrix}}_{\equiv P_{t+1}} \begin{bmatrix} E \\ U \\ N \end{bmatrix}_{t}$$

- \triangleright Assess role of supply-driven flows (e.g., p_{NU}) in shaping response of employment
- ► Recall law of motion for stocks in terms of transition probabilities (i.e., flows)

$$\begin{bmatrix} E_{t+k} \\ U_{t+k} \\ N_{t+k} \end{bmatrix} = \Big(\prod_{j=1}^k P_{t+j}\Big) \begin{bmatrix} E_t \\ U_t \\ N_t \end{bmatrix}$$

- \blacktriangleright Assess role of supply-driven flows (e.g., p_{NU}) in shaping response of employment
- ► Recall law of motion for stocks in terms of transition probabilities (i.e., flows)

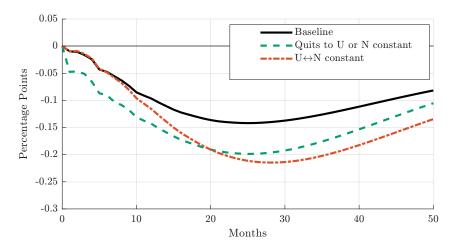
$$\begin{bmatrix} E_{t+k} \\ U_{t+k} \\ N_{t+k} \end{bmatrix} = \Big(\prod_{j=1}^k P_{t+j}\Big) \begin{bmatrix} E_t \\ U_t \\ N_t \end{bmatrix}$$

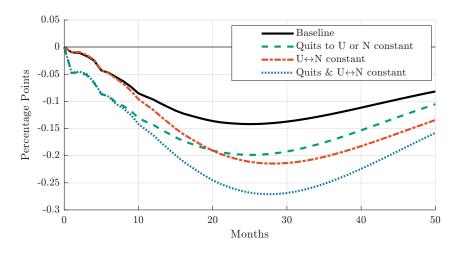

- \triangleright Construct hypothetical IRF of employment holding response of p_{NU} constant
- ▶ Substitute $\{p_{NU}\}_{t+j}$ in P_{t+j} with steady-state value \bar{p}_{NU} , then solve forward
- Difference of hypothetical and actual response of employment reflects role of PNU

- \blacktriangleright Assess role of supply-driven flows (e.g., p_{NU}) in shaping response of employment
- ► Recall law of motion for stocks in terms of transition probabilities (i.e., flows)

$$\begin{bmatrix} E_{t+k} \\ U_{t+k} \\ N_{t+k} \end{bmatrix} = \Big(\prod_{j=1}^k P_{t+j}\Big) \begin{bmatrix} E_t \\ U_t \\ N_t \end{bmatrix}$$

- \triangleright Construct hypothetical IRF of employment holding response of p_{NU} constant
- ▶ Substitute $\{p_{NU}\}_{t+j}$ in P_{t+j} with steady-state value \bar{p}_{NU} , then solve forward
- Difference of hypothetical and actual response of employment reflects role of PNU
- Repeat for all supply-driven flows, in various combinations




▶ Employment falls 0.1-0.15 percentage points when all flows respond

 \blacktriangleright Holding quit rate constant \rightarrow employment falls 40% more

 \blacktriangleright Holding U-to-N and N-to-U rates constant \rightarrow employment falls 60% more

► Holding all supply-driven flows fixed ⇒ Employment falls twice as much

▶ Controls for composition

▶ Participatio

Unemploymer

▶ Using Local Projections

Q: How important are labor supply decisions for explaining the response of labor market flows to a contractionary monetary policy shock?

- Q: How important are labor supply decisions for explaining the response of labor market flows to a contractionary monetary policy shock?
- ▶ We study heterogeneous agent model with labor market frictions and endogenous participation à la Krusell et al (2017)
 - ► Households face employment risk (job-finding/layoff) + shocks to labor productivity
 - Choose consumption/savings and labor supply (quit, search, accept)
 - Estimate by impulse response matching, treating as household block of HANK model

- Q: How important are labor supply decisions for explaining the response of labor market flows to a contractionary monetary policy shock?
- ► We study heterogeneous agent model with labor market frictions and endogenous participation à la Krusell et al (2017)
 - ► Households face employment risk (job-finding/layoff) + shocks to labor productivity
 - Choose consumption/savings and labor supply (quit, search, accept)
 - Estimate by impulse response matching, treating as household block of HANK model
- Estimated model offers very good fit to the data!
 - ► Shift in labor supply policies play imp. role in shaping response of employment
 - ► Labor supply response primarily driven by fall in job-finding rate (indirect effect)

- Q: How important are labor supply decisions for explaining the response of labor market flows to a contractionary monetary policy shock?
- ► We study heterogeneous agent model with labor market frictions and endogenous participation à la Krusell et al (2017)
 - ► Households face employment risk (job-finding/layoff) + shocks to labor productivity
 - Choose consumption/savings and labor supply (quit, search, accept)
 - Estimate by impulse response matching, treating as household block of HANK model
- Estimated model offers very good fit to the data!
 - ▶ Shift in labor supply policies play imp. role in shaping response of employment
 - ► Labor supply response primarily driven by fall in job-finding rate (indirect effect)
- ► Mechanism: Value of non-employment falls with job-finding rate
 - Consumption of non-employed falls with worsening job-finding prospects through precautionary motive + income effect
 - Fewer employed quit to non-employment, more non-employed search/accept

Let $V_E(a, z)$, $V_{UI}(a, z, \kappa)$, and $V_{NoUI}(a, z, \kappa)$ represent the values of being employed, UI-eligible non-employed, and UI-ineligible non-employed:

Defined over

- ightharpoonup a = assets
- $ightharpoonup z={
 m idiosyncratic}$ productivity: $\log z'=
 ho_z\log z+arepsilon_z$, $arepsilon_z\sim N(0,\sigma_z^2)$
- $ightharpoonup \kappa = \cos t$ of job search, iid from logistic distribution: mean $= \mu_{\kappa}$, scale $= \sigma_{\kappa}$

Let $V_E(a, z)$, $V_{UI}(a, z, \kappa)$, and $V_{NoUI}(a, z, \kappa)$ represent the values of being employed, UI-eligible non-employed, and UI-ineligible non-employed:

$$\begin{split} V_E(a,z) &= \max_{c,a'} \bigg\{ u(c) + \beta \max \big\{ \underbrace{\mathbb{E} \ V_{NoUI}(a',z',\kappa')}_{\text{Quit}}, \underbrace{\mathbb{E} \big[\delta_L V_{UI}(a',z',\kappa') + (1-\delta_L) V_E(a',z') \big]}_{\text{Do Not Quit}} \big\} \bigg\} \\ &\text{subject to} \\ c+a' &= Ra + (1-\tau)wz + T, \quad a' \geq 0 \end{split}$$

Let $V_E(a,z)$, $V_{UI}(a,z,\kappa)$, and $V_{NoUI}(a,z,\kappa)$ represent the values of being employed, UI-eligible non-employed, and UI-ineligible non-employed:

$$\begin{aligned} V_{UI}(a,z,\kappa) &= \max_{c,a'} \bigg\{ u(c) + \max \Big\{ \underbrace{(1-\kappa)\psi + \beta \mathcal{V}_{UI}^s(a',z)}_{\text{Search}}, \underbrace{\psi + \beta \mathcal{V}_{UI}^{ns}(a',z)}_{\text{Do Not Search}} \Big\} \bigg\} \\ &\text{subject to} \\ c+a' &= Ra + (1-\tau) \min \{ \phi wz, \bar{\phi} \} + T, \quad a' \geq 0 \end{aligned}$$

Let $V_E(a,z)$, $V_{UI}(a,z,\kappa)$, and $V_{NoUI}(a,z,\kappa)$ represent the values of being employed, UI-eligible non-employed, and UI-ineligible non-employed:

$$\begin{aligned} V_{UI}(a,z,\kappa) &= \max_{c,a'} \bigg\{ u(c) + \max \Big\{ \underbrace{(1-\kappa)\psi + \beta \mathcal{V}_{UI}^s(a',z)}_{\text{Search}}, \underbrace{\psi + \beta \mathcal{V}_{UI}^{ns}(a',z)}_{\text{Do Not Search}} \Big\} \bigg\} \\ &\text{subject to} \\ c+a' &= Ra + (1-\tau) \min \{ \phi wz, \bar{\phi} \} + T, \quad a' \geq 0 \end{aligned}$$

where

$$\mathcal{V}_{UI}^{s}(a',z) = f_{s} \cdot \max\{\mathbb{E} \ V_{E}(a',z'), \mathbb{E} \ \tilde{V}_{UI}(a',z',\kappa')\} + (1-f_{s}) \mathbb{E} \ \tilde{V}_{UI}(a',z',\kappa')$$

$$\mathcal{V}_{UI}^{ns}(a',z) = f_{ns} \cdot \max\{\mathbb{E} \ V_{E}(a',z'), \mathbb{E} \ V_{NoUI}(a',z',\kappa')\} + (1-f_{ns}) \mathbb{E} \ V_{NoUI}(a',z',\kappa')$$

$$\tilde{V}_{UI}(a,z,\kappa) = \delta_{UI} \ V_{NoUI}(a,z,\kappa) + (1-\delta_{UI}) \ V_{UI}(a,z,\kappa).$$

Let $V_E(a, z)$, $V_{UI}(a, z, \kappa)$, and $V_{NoUI}(a, z, \kappa)$ represent the values of being employed, UI-eligible non-employed, and UI-ineligible non-employed:

$$\begin{aligned} V_{NoUI}(a,z,\kappa) &= \max_{c,a'} \bigg\{ u(c) + \max \Big\{ \underbrace{(1-\kappa)\psi + \beta \mathcal{V}_{NoUI}^s(a',z)}_{\text{Search}}, \underbrace{\psi + \beta \mathcal{V}_{NoUI}^{ns}(a',z)}_{\text{Do Not Search}} \Big\} \bigg\} \\ &\text{subject to} \\ c+a' &= Ra+T, \quad a' \geq 0 \end{aligned}$$

where

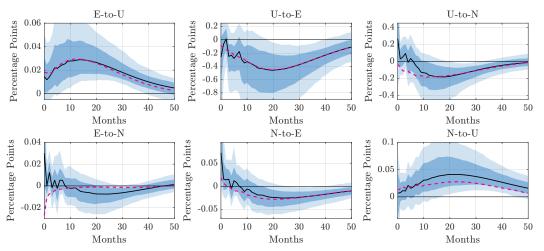
$$\mathcal{V}_{NoUI}^{s}(a',z) = f_{s} \cdot \max\{\overline{\mathbb{E} \ V_{E}(a',z')}, \overline{\mathbb{E} \ V_{NoUI}(a',z',\kappa')}\} + (1 - f_{s}) \, \overline{\mathbb{E} \ V_{NoUI}(a',z',\kappa')}$$

$$\mathcal{V}_{NoUI}^{ns}(a',z) = f_{ns} \cdot \max\{\overline{\mathbb{E} \ V_{E}(a',z')}, \overline{\mathbb{E} \ V_{NoUI}(a',z',\kappa')}\} + (1 - f_{ns}) \, \overline{\mathbb{E} \ V_{NoUI}(a',z',\kappa')}$$

Estimation: A Monetary Policy Shock in the Model

- ► Feed in response of job-finding rate, layoff rate, real interest rates and wages from the data as MIT shocks
- Overall response of labor market flows also determined by endogenous changes in policy functions + distribution of households across labor market states

Estimation: A Monetary Policy Shock in the Model


- ► Feed in response of job-finding rate, layoff rate, real interest rates and wages from the data as MIT shocks
- Overall response of labor market flows also determined by endogenous changes in policy functions + distribution of households across labor market states
- ► Calibrate a number of parameters, $\theta_{EXT} \equiv \{\beta, \gamma, \bar{R}, \delta_{UI}, w, \alpha, \phi, \bar{\phi}, \tau, T\}$
 - Assume $u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$, $f_{ns} = \alpha f_s$

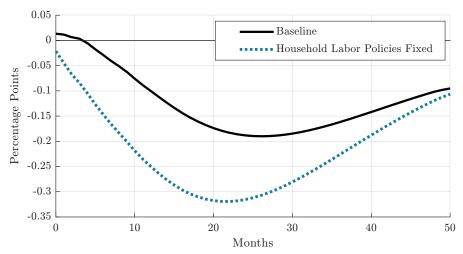
Estimation: A Monetary Policy Shock in the Model

- ► Feed in response of job-finding rate, layoff rate, real interest rates and wages from the data as MIT shocks
- Overall response of labor market flows also determined by endogenous changes in policy functions + distribution of households across labor market states
- ► Calibrate a number of parameters, $\theta_{EXT} \equiv \{\beta, \gamma, \bar{R}, \delta_{UI}, w, \alpha, \phi, \bar{\phi}, \tau, T\}$
 - Assume $u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$, $f_{ns} = \alpha f_s$
- Estimate remaining parameters to match IRFs of labor market flows
 - ▶ À la Christiano, Eichenbaum, Evans (2005) or Auclert, Rognlie, Straub (2020)

$$\begin{split} \theta_{EST} &\equiv \{\rho_z, \sigma_z, \mu_\kappa, \sigma_\kappa, \psi, \delta_L, f_s\} \\ \hat{J} &= \{EU_t, EN_t, UE_t, UN_t, NE_t, NU_t\}_{t=0}^{50} \\ \hat{\theta}_{EST} &= \arg\min_{\theta_{EST}} (J(\theta_{EST}) - \hat{J})' \Sigma^{-1} (J(\theta_{EST}) - \hat{J}) \end{split}$$

Response of Labor Market Flows: Model vs Data

- ► Labor market flows from model (magenta lines) largely fall within 68% Cl's
- ▶ Model matches EN/EU flows by quit/layoff as untargeted moments •


Evaluating the Role of Labor Supply

- ► Ability of model to match response of labor market flows could reflect endogenous changes in composition or household labor supply
- ► For example, decrease in U-to-N flows could reflect
 - ► Greater mass of "likely searchers" in non-employment, or
 - ► Higher propensity to search for employment of all workers

Evaluating the Role of Labor Supply

- ► Ability of model to match response of labor market flows could reflect endogenous changes in composition or household labor supply
- ► For example, decrease in U-to-N flows could reflect
 - ► Greater mass of "likely searchers" in non-employment, or
 - ► Higher propensity to search for employment of all workers
- To assess relative importance of two channels, simulate model holding labor supply policy functions at steady state
 - ▶ If changes in labor supply do not matter, employment should be unaffected

Evaluating the Role of Labor Supply: Employment Response

- ► Finding: Employment drops by additional $\approx 70\%$
 - ▶ Indicates broad-based increase in labor supply to contractionary monetary shock

Evaluating the Role of Labor Supply: Employment Response

- ► Finding: Employment drops by additional $\approx 70\%$
 - Indicates broad-based increase in labor supply to contractionary monetary shock
 - ► Shift in labor supply for employed and non-employed is equally important

Conclusion

- New evidence from labor market flows consistent with substantial increase in labor supply to a contractionary monetary policy shock
 - ► Increase in search activity + decline in quits to non-employment
 - ► Holding response of supply-driven flows constant, decline in employment doubles

Conclusion

- New evidence from labor market flows consistent with substantial increase in labor supply to a contractionary monetary policy shock
 - ► Increase in search activity + decline in quits to non-employment
 - ► Holding response of supply-driven flows constant, decline in employment doubles
- ► Interpret findings through estimated heterogenous agent model with frictional labor markets and participation margin
 - ► Model matches response of labor flows through increase in labor supply
 - Why? Option value of employment ↑ when job finding rate falls

Conclusion

- New evidence from labor market flows consistent with substantial increase in labor supply to a contractionary monetary policy shock
 - ► Increase in search activity + decline in quits to non-employment
 - ► Holding response of supply-driven flows constant, decline in employment doubles
- Interpret findings through estimated heterogenous agent model with frictional labor markets and participation margin
 - ► Model matches response of labor flows through increase in labor supply
 - Why? Option value of employment ↑ when job finding rate falls
- Empirical evidence + model findings consistent with important role of labor supply in monetary transmission mechanism
- ► Future work: study labor supply response to Covid-era transfers (e.g., "Great Resignation") and evaluate role in subsequent inflation

Appendix

Cyclical Properties of Labor Market Stocks and Flows

Cyclicality of Labor Market Stocks

	Employment-	Unemployment	Participation
	Population Ratio	Rate	Rate
mean(x)	61.14	6.19	65.16
std(x)/std(Y)	0.72	8.25	0.23
corr(x, Y)	0.83	-0.85	0.35

Note: x denotes the variable in each column, Y denotes HP-filtered log real GDP. Standard deviations and correlations are computed for HP-filtered quarterly averages. The sample is 1978-2019.

Cyclicality of Labor Market Flows

	EU	EN	UE	UN	NE	NU
mean(x)	0.014	0.030	0.255	0.226	0.046	0.025
std(x)/std(Y)	5.41	2.40	5.69	4.13	2.87	5.22
corr(x, Y)	-0.81	0.50	0.77	0.71	0.67	-0.67

Note: x denotes the variable in each column, Y denotes HP-filtered log real GDP. Standard deviations and correlations are computed for HP-filtered quarterly averages. The sample is 1978-2019.

Decomposition of Flows From Employment to Non-Employment

▶ Previous work: EU flows dominated by layoffs (Elsby et al. 2009, Ahn, 2023)

	Total	Quits	Layoffs	Other
mean(x)	0.014	0.002	0.008	0.004
std(x)/std(Y)	5.41	8.12	7.94	5.44
corr(x, Y)	-0.81	0.60	-0.84	-0.54

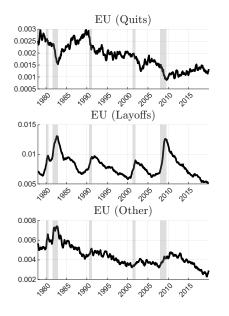
Note: x denotes the variable in each column, Y denotes HP-filtered log real GDP. Standard deviations and correlations are computed for HP-filtered quarterly averages.

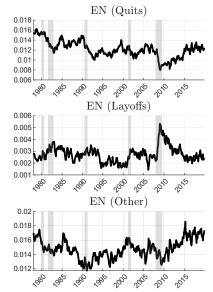
Decomposition of Flows From Employment to Non-Employment

Previous work: EU flows dominated by layoffs (Elsby et al. 2009, Ahn, 2023)

	Total	Quits	Layoffs	Other
mean(x)	0.014	0.002	0.008	0.004
std(x)/std(Y)	5.41	8.12	7.94	5.44
corr(x, Y)	-0.81	0.60	-0.84	-0.54

Note: x denotes the variable in each column, Y denotes HP-filtered log real GDP. Standard deviations and correlations are computed for HP-filtered quarterly averages.


This paper: EN flows show much larger role for quits


	Total	Quits	Layoffs	Other
mean(x)	0.030	0.012	0.003	0.015
std(x)/std(Y)	2.40	5.84	14.39	4.78
corr(x, Y)	0.50	0.53	-0.44	0.25

· Times Series of Decomposed EU and EN 📉 • Economic Significance of Quits and Layoffs

▶ Robustness of EU and EN Decompositions

Decomposition of EU Flows

Relevance of Distinction Between Quits and Layoffs

Post-EU Transition Rates: Quits vs Layoffs

		То	
From	E	U	N
$\begin{split} E &- U(Quit) \\ E &- U(Layoff) \end{split}$	0.448	0.399	0.153
E-U(Layoff)	0.426	0.468	0.106

Note: Transition rates are shown for individuals that are in their first month of unemployment following an employment spell, split by reason for unemployment.

Relevance of Distinction Between Quits and Layoffs

Post-EN Report: Quits vs Layoffs

Want Job E-N(Quit) 0.210 Want Job E-N(Layoff) 0.515 NE Want Job 0.145 NE Do Not Want Job 0.037 NU Want Job 0.172 NU Do Not Want Job 0.012		Average Probability
NE Want Job 0.145 NE Do Not Want Job 0.037 NU Want Job 0.172	$Want\;Job\; \;E\text{-}N(Quit)$	0.210
NE Do Not Want Job 0.037 NU Want Job 0.172	Want Job E-N(Layoff)	0.515
NU Want Job 0.172	NE Want Job	0.145
'	NE Do Not Want Job	0.037
NU Do Not Want Job 0.012	NU Want Job	0.172
	$NU \mid Do \ Not \ Want \ Job$	0.012

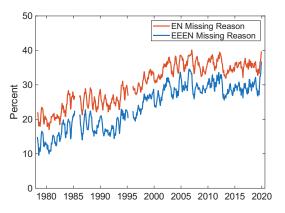
Note: The top section shows the probability that individuals want a job, split by the reason for leaving to nonparticipation. The bottom section shows the probabilities of moving to employment, split by whether or not nonparticipants report wanting a job.

Robustness of Quit/Layoff Distinction

Sequences of Reasons for U among E-U-U Individuals

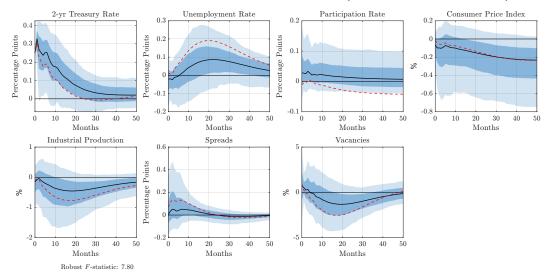
Sample period	$P(\ Quit \mid Layoff)$	$P(\;Layoff \mid Quit)$
pre-Redesign	0.039	0.208
post-Redesign	0.007	0.026

Note: The first row shows the probability of individuals switching their reason for unemployment from layoff to quit (in the first column), or from quit to layoff (in the second column), prior to the 1994 CPS redesign. The second row shows the same, but for the period following the redesign.

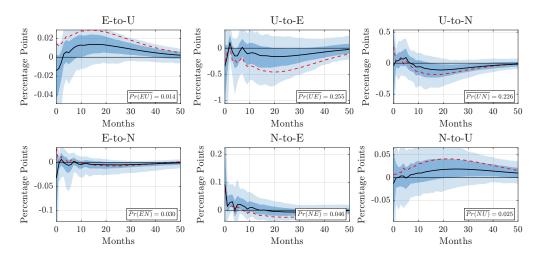

Transition Rates Across E-U-U Individuals

From E U	
	N
(a) $E - U(Quit) - U(Layoff)$ 0.339 0.553 0.	108
(b) $E - U(Quit) - U(Quit)$ 0.343 0.536 0.	121
(c) $E - U(Layoff) - U(Quit)$ 0.352 0.557 0.	091
$(d) \boxed{E - U(Layoff) - U(Layoff)} 0.264 0.667 0.$	068

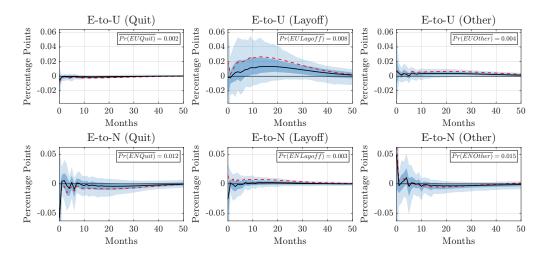
Note: Transition rates are shown for individuals that are in their second month of unemployment following an employment spell, split by reason for unemployment. The rates are computed for the period prior to the 1994 CPS redesign.


Fraction of EN Transitions with Missing Reason

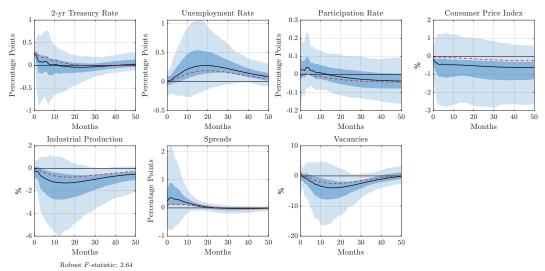
Note: The red line shows the proportion of individuals making an EN transition for which there is missing data on the reason for leaving the last job. The blue line shows the same calculation for individuals that were employed in each of the first three months before moving to nonparticipation. Series are smoothed using a centered 5-month moving average.



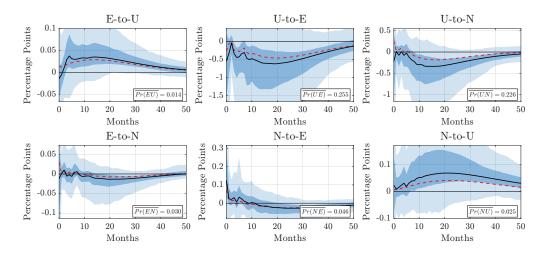
Baseline VAR: FOMC Announcement Shocks (Not Orthogonalized)



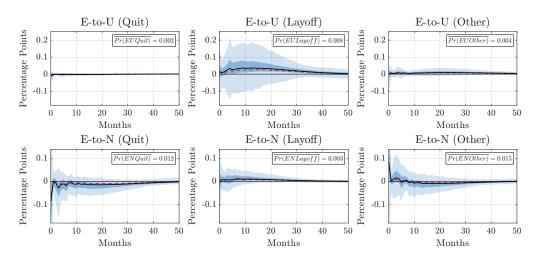
Labor Market Flows: FOMC Announcement Shocks (Not Orthogonalized)



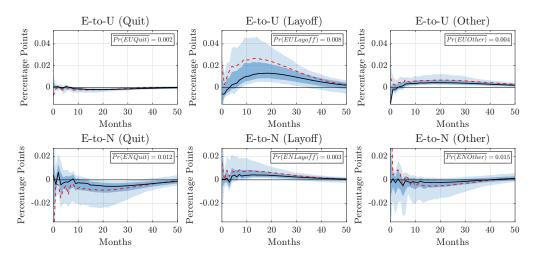
Quit/Layoff Responses: FOMC Announcement Shocks (Not Orthog.)



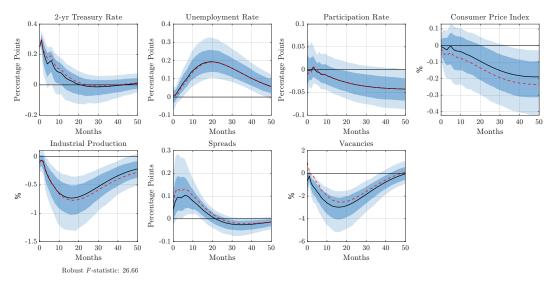
Baseline VAR: FOMC Announcement Shocks (Orthogonalized)



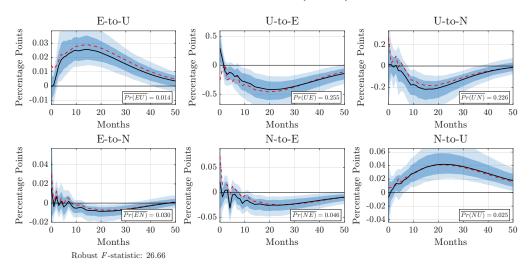
Labor Market Flows: FOMC Announcement Shocks (Orthogonalized)



Quit/Layoff Responses: FOMC Announcement Shocks (Orthogonalized)



Quit/Layoff Responses: Romer & Romer Shocks


Baseline VAR: Aruoba & Drechsel (2024) Shocks

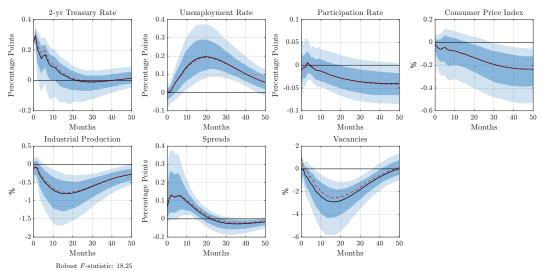
Baseline estimates indicated by red dashed lines

◆ Back (Main VAR) ◆ Back (Robustness)

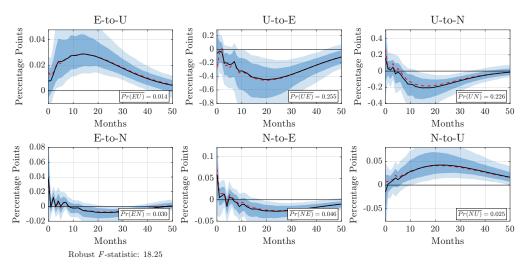

Labor Market Flows: Aruoba & Drechsel (2024) Shocks

► Baseline estimates indicated by **red** dashed lines

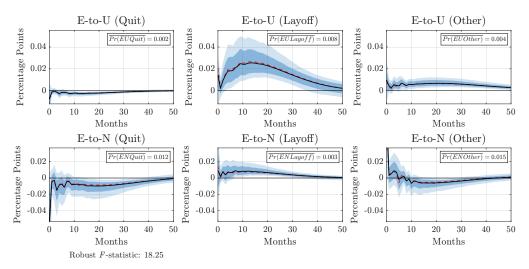
◆ Back (Flows)
◆ Back (Robustness)


Quit/Layoff Responses: Aruoba & Drechsel (2024) Shocks

► Baseline estimates indicated by **red** dashed lines


◆ Back (Flows Decomposition)
 ◆ Back (Robustness)

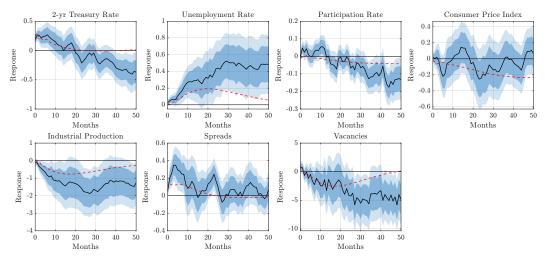
Baseline VAR: AD (2024) and SJ (2025) Shocks



Labor Market Flows: AD (2024) and SJ (2025) Shocks

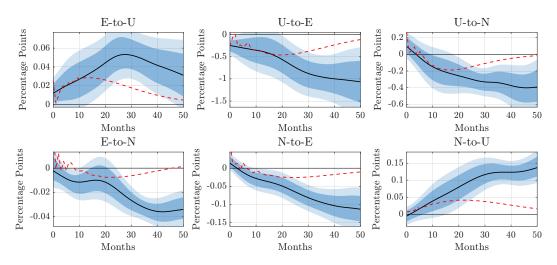


Quit/Layoff Responses: AD (2024) and SJ (2025) Shocks


Baseline Variables: Smooth Local Projection Estimates

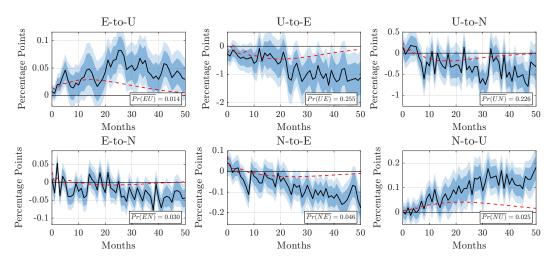
Baseline estimates indicated by red dashed lines

◆ Back (Main VAR) ◆ Back (Robustness)

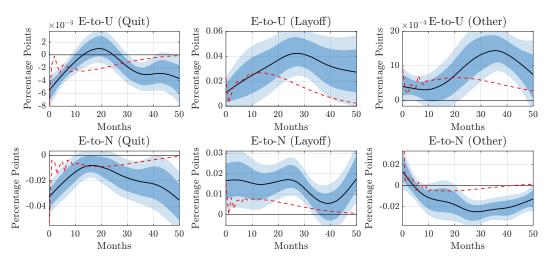

Baseline Variables: Local Projection Estimates

► Baseline estimates indicated by **red** dashed lines

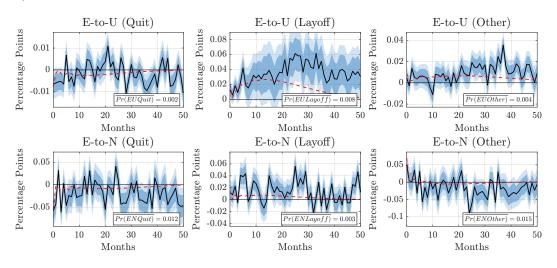
◆ Back (Main VAR) ◆ Back (Robustness)


Labor Market Flows: Smooth Local Projection Estimates

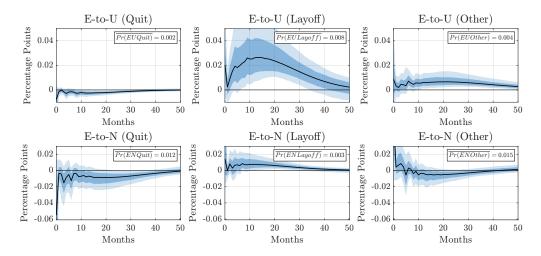
Baseline estimates indicated by red dashed lines


◆ Back (Flows) ◆ Back (Robustness)

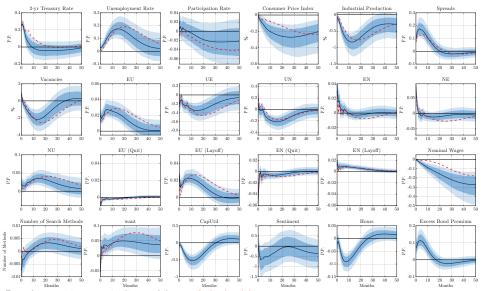
Labor Market Flows: Local Projection Estimates


Quit/Layoff Responses: Smooth Local Projection Estimates

Baseline estimates indicated by red dashed lines

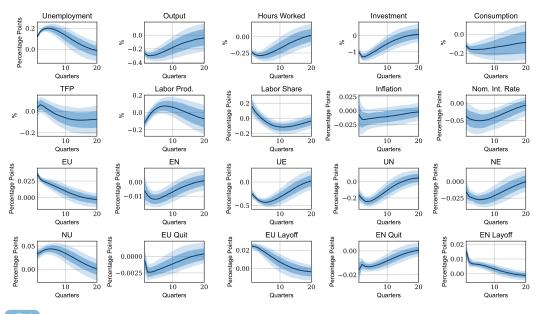

◆ Back (Flows Decomposition) ◆ Back (Robustness)

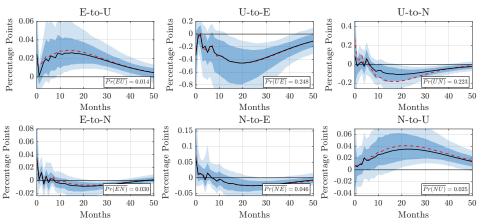
Quit/Layoff Responses: Local Projection Estimates


Quit/Layoff Responses: Including Other Separations

"Other separations" not a key driver of EU or EN responses

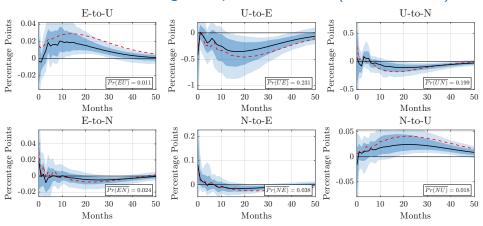
◆ Back (Flows Decomposition)◆ Back (Robustness)


Large Scale Bayesian VAR


Baseline estimates indicated by red dashed lines

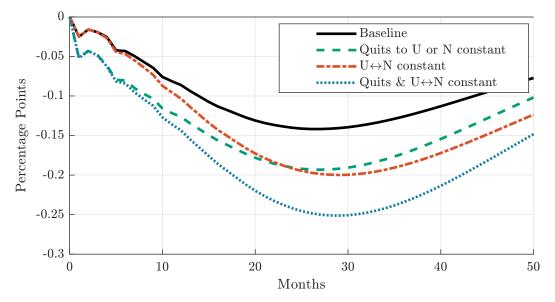
◆ Back (Main VAR) ◆ Back (Robustness)

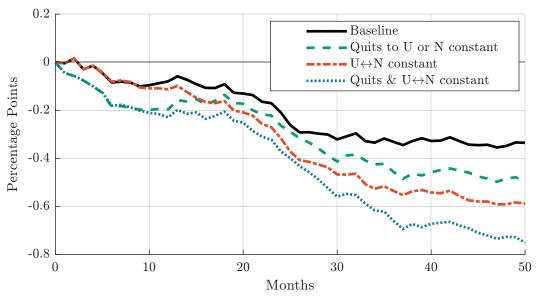
Main Business Cycle Shock + Flows (Angeletos et al. (2020))


Labor Market Flows: Holding Composition Fixed

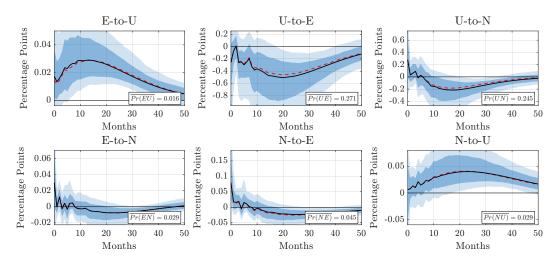
- ► Composition-adjusted flows by ex-ante characteristics, à la Elsby et al. (2015)
- lacktriangle Fix shares using bins for age imes gender imes education imes reason for unemployment
- ► Baseline estimates indicated by **red** dashed lines

◆ Back


Labor Market Flows: Holding Composition Fixed (Full Controls)

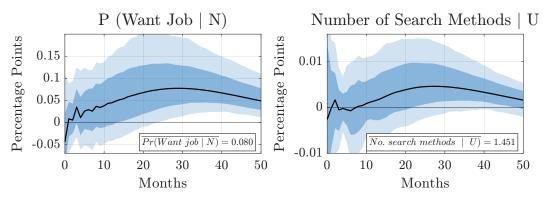

- ► Fix shares using bins for age × gender × education × reason for unemployment × labor market status one year ago
- Baseline estimates for alternative sample indicated by red dashed lines

Decomposing Employment Response: Holding Composition Fixed



Decomposing Employment Response: Using Local Projections

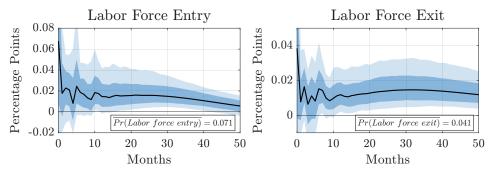
Labor Market Flows: Corrected for Time-Aggregation

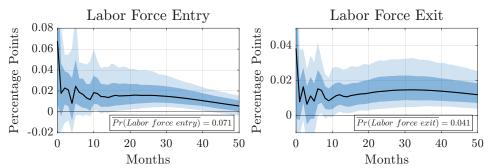

Baseline estimates indicated by red dashed lines

Intensive Margins of Labor Supply

Intensive margins of job search consistent with behavior of NU/UN flows:

- For N: share that want a job
- ► For U: number of search methods

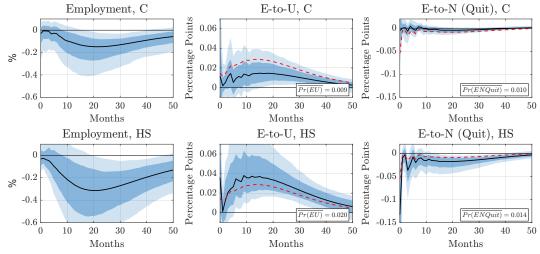

Intensive Margins: Time-Series


◆ Back

Participation: Response of Labor Force Entry and Exit

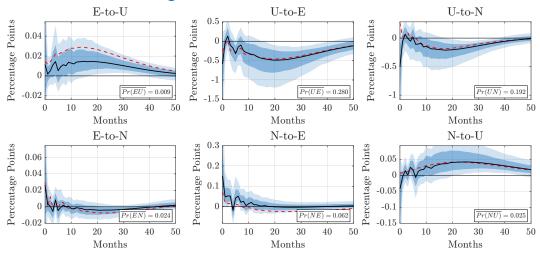
▶ Participation falls due to higher exit rate, offset by rise in entry

Participation: Response of Labor Force Entry and Exit

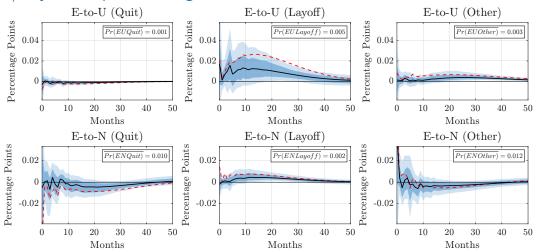

- Participation falls due to higher exit rate, offset by rise in entry
- ▶ Increase in exits driven by u_{t-1} , attenuated by UN_t and EN_t

$$\begin{split} & \left(\mathsf{Labor\ Force\ Entry\ Rate}\right)_t = \mathit{NU}_t + \mathit{NE}_t, \\ & \left(\mathsf{Labor\ Force\ Exit\ Rate}\right)_t = \mathit{u}_{t-1} \cdot \mathit{UN}_t + (1-\mathit{u}_{t-1}) \cdot \mathit{EN}_t, \end{split}$$

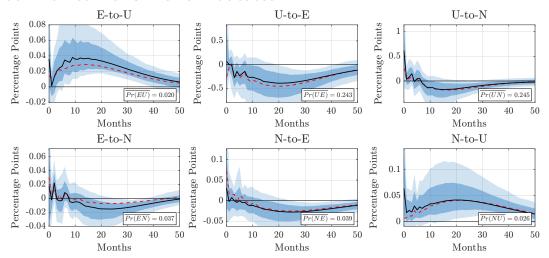
where u_{t-1} denotes the unemployment rate (and $\overline{UN}>>\overline{EN}$)


Heterogeneity in Labor Market Responses: Education

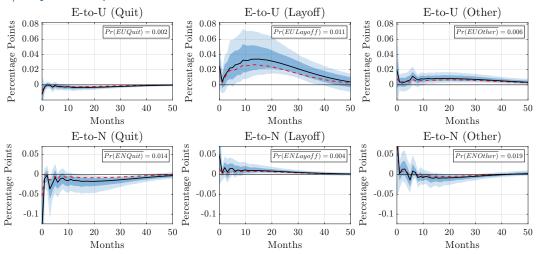
- ▶ Decline in E-to-N concentrated among less educated
- Baseline estimates indicated by red dashed lines


Labor Market Flows: Higher-Educated

Baseline estimates indicated by red dashed lines


Quit/Layoff Responses: Higher-Educated

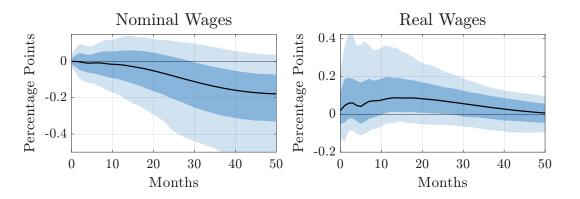
Baseline estimates indicated by red dashed lines


Labor Market Flows: Lower-Educated

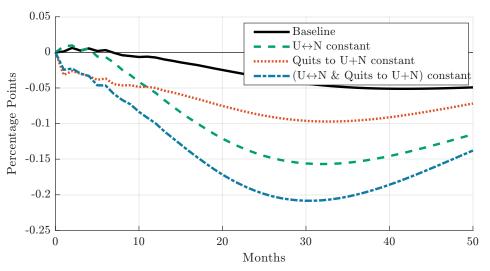
► Baseline estimates indicated by **red** dashed lines

Quit/Layoff Responses: Lower-Educated

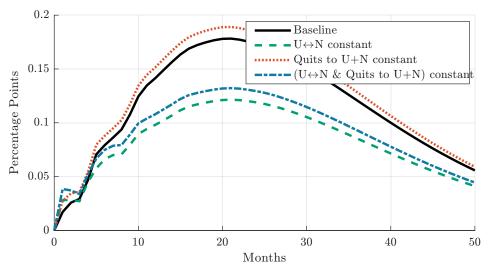
Baseline estimates indicated by red dashed lines


Response of Job-to-Job Flows (1994-2019)

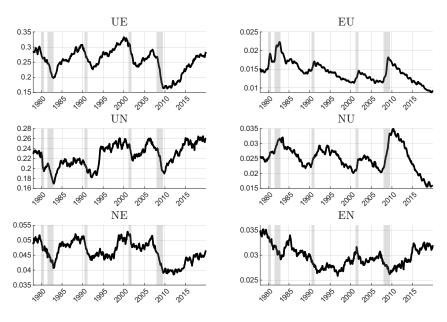
- ► Recent literature posits important role of job-to-job transitions for inflation
 - e.g. Faccini & Melosi (2023), Moscarini & Postel-Vinay (2025), Birinci et al (2025)
- Our estimates show no response of EE rate to contractionary MPS


Response of Wages

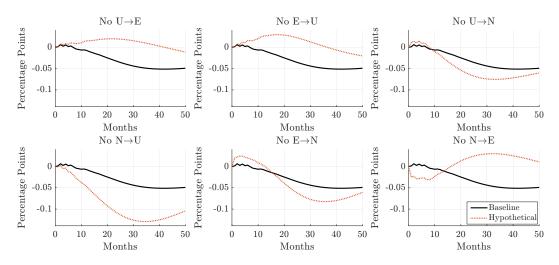
- Nominal wages decline more slowly than CPI
 - ⇒ real wages rise very slightly in the short-run


Participation Response to a Monetary Policy Shock

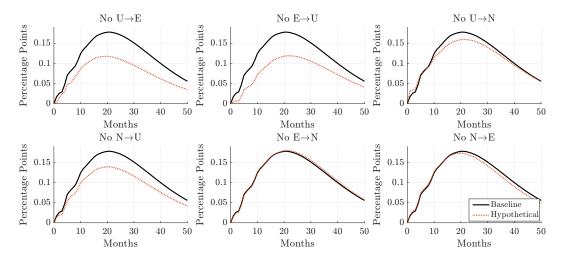
▶ With response of supply-driven flows fixed ⇒ Participation far more procyclical


Unemployment Response to a Monetary Policy Shock

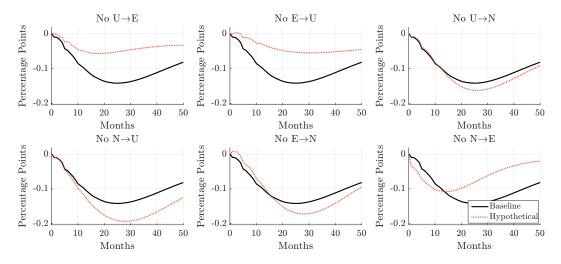
▶ Response of quits not important for unemployment dynamics



Time Series of Labor Market Flows


The Ins and Outs of Participation

ightharpoonup EightharpoonupU and UightharpoonupE are important for participation cycle


The Ins and Outs of Unemployment

ightharpoonup EightharpoonupU and UightharpoonupE roughly equally responsible for rise in unemployment

The Ins and Outs of Employment

 \triangleright N \rightarrow U more important than U \rightarrow N for supporting employment

Timing within a Model Period

- 1. All individuals draw a new value of productivity, z. Non-employed individuals draw an i.i.d. search cost, κ .
- Employed individuals make consumption/saving decisions and choose whether or not to quit their job. Non-employed individuals make consumption/saving decisions and choose whether or not to search for a job.
- 3. Employed individuals who do not quit are exogenously laid off with probability δ . Non-employed individuals receive job offers with probabilities f_s of f_{ns} , depending on whether or not they actively search.
- 4. Non-employed individuals who receive job offers decide whether or not to accept such offers.
- 5. UI-eligible non-employed individuals who search and either do not receive a job offer or do not accept an offer are subject to UI expiry with probability δ_{UI} .

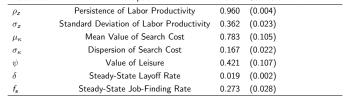
∢ Back

Estimation: A Monetary Policy Shock in the Model

- ► Feed in response of job-finding rate, layoff rate, real interest rates and wages from the data
- Overall response of labor market flows also determined by endogenous changes in policy functions + distribution of households across labor market states

Estimation: A Monetary Policy Shock in the Model

- ► Feed in response of job-finding rate, layoff rate, real interest rates and wages from the data
- Overall response of labor market flows also determined by endogenous changes in policy functions + distribution of households across labor market states
- ► Calibrate a number of parameters, $\theta_{EXT} \equiv \{\beta, \gamma, \bar{R}, \delta_{UI}, w, \alpha, \phi, \bar{\phi}, \tau, T\}$
 - Assume $u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$, $f_{ns} = \alpha f_s$


Estimation: A Monetary Policy Shock in the Model

- ► Feed in response of job-finding rate, layoff rate, real interest rates and wages from the data
- Overall response of labor market flows also determined by endogenous changes in policy functions + distribution of households across labor market states
- ► Calibrate a number of parameters, $\theta_{EXT} \equiv \{\beta, \gamma, \bar{R}, \delta_{UI}, w, \alpha, \phi, \bar{\phi}, \tau, T\}$
- Estimate remaining parameters to match IRFs of labor market flows
 - À la Christiano, Eichenbaum, Evans (2005) or Auclert, Rognlie, Straub (2020)

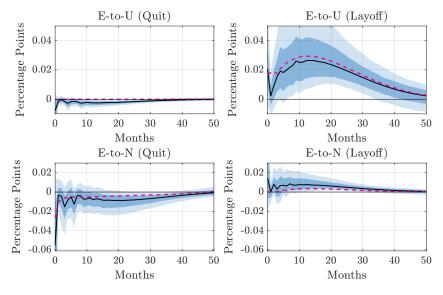
$$\begin{split} \theta_{EST} &\equiv \{\rho_z, \sigma_z, \mu_\kappa, \sigma_\kappa, \psi, \delta_L, f_s\} \\ \hat{J} &= \{EU_t, EN_t, UE_t, UN_t, NE_t, NU_t\}_{t=0}^{50} \\ \hat{\theta}_{EST} &= \arg\min_{\theta_{EST}} (J(\theta_{EST}) - \hat{J})' \Sigma^{-1} (J(\theta_{EST}) - \hat{J}) \end{split}$$

Model Parameters

Calibrated				
Parameter	Description	Value	Source/Target	
β	Discount Factor	0.988	Quarterly MPC of 7-8%	
R	Steady-State Real Interest Rate	1.001	1% Annual	
γ	Risk Aversion Coefficient	2	Standard value	
δ^{UI}	Benefit Exhaustion Probability	0.167	Expected duration of U	
W	Steady-State Wage	1	Normalization	
α	Efficiency of Passive Search	0.6	Job-finding rate from N	
ϕ	UI Replacement Rate	0.50	Graves (2023)	
$\bar{\phi}$	Maximum UI Payments	1.85	Graves (2023)	
τ	Labor Income Tax Rate	0.33	Auclert et al. (2021)	
T	Lump-sum Transfer	0.24	Auclert et al. (2021)	
Estimated				
Parameter	Description	Value	Standard Error	
ρ_z	Persistence of Labor Productivity	0.960	(0.004)	
σ_z	Standard Deviation of Labor Productivity	0.362	(0.023)	
μ_{κ}	Mean Value of Search Cost	0.783	(0.105)	
σ.,	Dispersion of Search Cost	0.167	(0.022)	

Results: Steady State

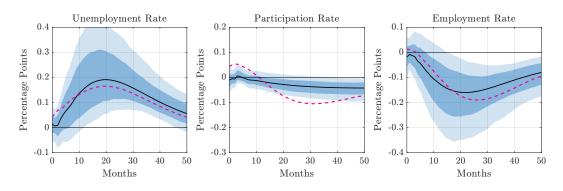
- 1. Model almost exactly fits steady-state transition rates between E, U and N •
- 2. Model produces quarterly MPC of 7-8%, annual MPE of 5% In line with Orchard et al. (2023), Boehm et al. (2024), Golosov et al. (2023)



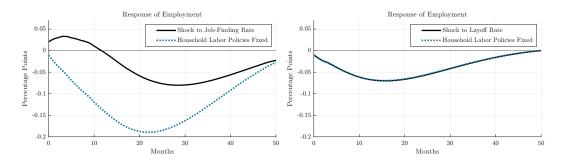
Steady-State Labor Market Flows

Flow	Model	Data
EU	0.0143	0.0142
EN	0.0296	0.0296
UE	0.2548	0.2547
UN	0.2263	0.2262
NE	0.0461	0.0461
NU	0.0253	0.0252

◆ Back


Response of Quits and Layoffs: Model vs Data

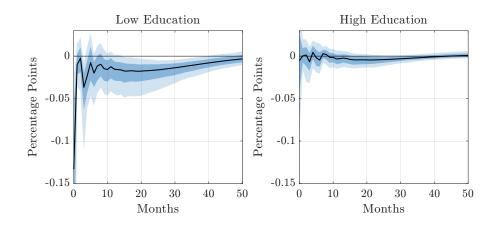
Model closely matches response of EN/EU flows by reason (quit or layoff)

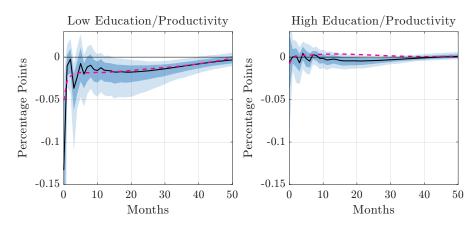

Response of Labor Market Stocks: Model vs Data

◆ Back

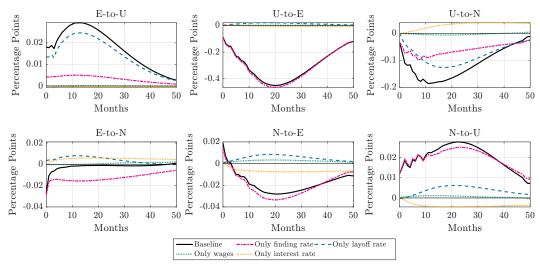
Mechanism: What is labor supply responding to?

- Our "monetary policy shock" consists of paths for job-finding rate, layoff rate, real interest rates and wages
- ► Feed in paths of job-finding rate and layoff rate one by one:


- ► Labor supply increase is entirely due to fall in job-finding rate
- ▶ Households less likely to quit/more likely to accept if jobs are harder to find


Mechanism: Whose labor supply is responding?

Data: Decline in quits to N is concentrated among less educated



Mechanism: Whose labor supply is responding?

- Data: Decline in quits to N is concentrated among less educated
- ▶ Model: Decline in quits to N is concentrated among less productive

Decomposed Response of Labor Market Flows

- Drop in quits due to drop in job-finding rate
- ► Increase in layoffs reduces U-to-N flows through composition effect

