The Marginal Efficiency of Active Search

Christopher Huckfeldt¹

¹Federal Reserve Board of Governors

3rd Australasian Search & Matching Conference 2024 January 12-13, 2024

The views expressed in this paper/presentation are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or any other person associated with the Federal Reserve System.

Marginal efficiency of active search

- Two ways of finding a job:
 - 1. Search for the job (active search)
 - 2. Let the job search for you (passive search)
- Growing literature documenting the importance of passive search
 - Davis, Macaluso, and Waddell (2021)
 - Faberman, Mueller, Sahin, and Topa (2022)
- How important is active search for finding a job?
 - Key parameter: marginal efficiency of active search (MEoAS)
 - Describes elasticity of job-finding rate w/r.t. search effort
- This paper: estimate & characterize the MEoAS of non-employed workers over a broad class of models

Estimating the MEoAS: a first pass

- Study general model of random search:
 - Extensive and intensive margins of active search
 - All workers engaged in passive search
 - Constant marginal efficiency of active search (MEoAS)

Assumptions/ingredients are familiar to the literature.

- Develop restriction: job-finding rate of active-searchers (relative to passive searchers) should be increasing in average active search
- If restriction holds, can estimate MEoAS from time series
- But (robustly) reject restriction: all else equal, probability of finding a job from active search is declining in average active search effort!
- Reexamine assumptions: why should the MEoAS be constant?

Estimating the MEoAS: a second pass

- Rules out strategic substitutability of active search
- ► Go back to model: leave elasticity of substitution between active and passive search unrestricted (i.e., allow elasticity < ∞)</p>
- New model, new restriction: this time, cannot reject
- Estimated MEoAS is decreasing in aggregate quantity of active search
- Active search is "less important" during a recession
- Policy implication: optimal UI increases during recessions

A general model

Setting

- Representative family à la Andolfatto (1995) and Merz (1996)
 - Unit measure of workers indexed by *i* within each family
 - ne_t workers are non-employed, $1 ne_t$ are employed

Perfect consumption insurance within family

- Concave utility over consumption
- Workers must sacrifice leisure to work or search
- A matched worker and job generate y_{it} units of output
- Matches generated through CRS matching function m_t
- Large measure of firms post v_t vacancies
- Search of non-employed is passive, possibly also active

Active and passive search

- CRS matching function *m_t* over search efficiency and vacancies
- Search efficiency is composite of active and passive search
- Non-employed inelastically provide one unit of passive search
- Non-employed workers choose s_{A,i,t} units of active search, subject to fixed costs (s_{i,t}) and convex costs (c (s_{A,i,t}))
- Flexible to different notions of active search:
 - ▶ Intensive & extensive margin: $S_{A,i,t} \in \mathbb{R}_+$ (FMST 2022)
 - ► Ext. margin: s_{A,i,t} ∈ {0, 1} (KMRS 2017, CFM 2022, AV 2023)
- Marginal efficiency of active search (MEoAS) denoted as ω

Matching function and job-finding probabilities

▶ Job-finding rate, *f*_{*i*,*t*}

$$f_{i,t} = \mathbf{s}_{i,t} \cdot \left(\frac{m_t(\mathbf{s}_t, \mathbf{v}_t)}{\mathbf{s}_t}\right) \tag{(*)}$$

Search efficiency, s_{i,t}

$$\mathbf{S}_{i,t} = \omega \cdot \mathbf{S}_{\mathcal{A},i,t} + (1-\omega) \cdot 1$$
 (**)

Aggregate active & passive search search,
$$s_{A,t} \& s_{P,t}$$

 $s_{A,t} = \int_{i} s_{A,i,t} d\Gamma_{t}^{ne}(i) \& s_{P,t} = ne_{t}$

Aggregate search efficiency, s_t

$$\mathbf{s}_t = \omega \cdot \mathbf{s}_{A,t} + (\mathbf{1} - \omega) \cdot n\mathbf{e}_t$$

Fraction of non-employed engaged in active search, $\check{\Gamma}_{t}^{ne} \equiv \int \mathbb{I}\{\mathbf{s}_{A,i,t} > 0\} d\Gamma_{t}^{ne}(i)$

Problem of the unemployed

$$U_{i,t} = \max_{s_{A,i,t}} \left\{ \frac{1}{\mu_t} \left(\psi - \varsigma_{i,t} \cdot \mathbb{I} \left\{ s_{A,i,t} > 0 \right\} - \chi \cdot \frac{s_{A,i,t}}{1 + \varkappa} \right) + \mathbb{E}_t \left\{ \Lambda_{t,t+1} \cdot \left[f_{i,t} \cdot W_{i,t+1} + (1 - f_{i,t}) \cdot U_{i,t+1} \right] \right\}$$
with
$$f_{i,t} = \left(\omega \cdot s_{A,i,t} + (1 - \omega) \right) f_t$$

V_{i,t} (U_{i,t}) is consumption-equivalent value of (non)employment
 Flow value of leisure ψ and search cost normalized by marginal utility of consumption μ_t, with Λ_{t,t+1} ≡ β · (μ_{t+1}/μ_t)

Solution

Optimal active search, S_{A,i,t}

$$s_{A,i,t} = \begin{cases} s_{A,i,t}^{int} & \text{if } U_{i,t} \Big|_{s_A = s_{A,i,t}^{int}} - U_{i,t} \Big|_{s_A = 0} \\ 0 & \text{otherwise} \end{cases}$$

where $\frac{\chi}{\mu_t} \left[s_{A,i,t}^{int} \right]^{\varkappa} = \mathbb{E}_t \left\{ \Lambda_{t,t+1} \cdot \omega \cdot f_t \cdot \left[V_{i,t+1} - U_{i,t+1} \right] \right\}$

MC = MB when net value of active search is positive

- Active search ($s_{A,i,t} \& \mathbb{I} \{ s_{A,i,t} > 0 \}$) can be
 - Procyclical, from f_t (substitution effect)
 - Countercyclical, from μ_t (income effect)
- Income effect dominates in data

Restriction: active-passive ratio and average active search

• Restriction in active-passive ratio $\overline{f}_{A,t}/\overline{f}_{P,t}$ from (*) and (**):

$$\frac{\overline{f}_{A,t}}{\overline{f}_{P,t}} - 1 = \frac{\left(\omega \cdot \overline{s}_{A,t}^* + (1-\omega)\right) \left(\frac{m_t(s_t,v_t)}{s_t}\right)}{(1-\omega) \left(\frac{m_t(s_t,v_t)}{s_t}\right)} - 1 = \left(\frac{\omega}{1-\omega}\right) \cdot \overline{s}_{A,t}^*$$

• Unit elasticity in $\overline{s}^*_{A,t}$ – all other quantities drop out!

- Match efficiency differenced out
- Unobserved heterogeneity of non-employed enters through $\bar{s}^*_{A,t}$
- Non-employed engaged in active search $\check{\Gamma}_t^{ne}$ never appears at all

Similar restr'n appears in KMRS (2017, AER) & FMST (2022, ECTA) & ...

Restriction: active-passive ratio and average active search

• Restriction in active-passive ratio $\overline{f}_{A,t}/\overline{f}_{P,t}$ from (*) and (**):

$$\log\left(\frac{\bar{f}_{A,t}}{\bar{f}_{P,t}}-1\right) = \log\left(\frac{\omega}{1-\omega}\right) + 1 \cdot \log \bar{s}^*_{A,t}$$

• Unit elasticity in $\overline{s}_{A,t}^*$ – all other quantities drop out!

- Match efficiency differenced out
- Unobserved heterogeneity of non-employed enters through $\bar{s}^*_{A,t}$
- Non-employed engaged in active search $\check{\Gamma}_t^{ne}$ never appears at all

Similar restr'n appears in KMRS (2017, AER) & FMST (2022, ECTA) & ...

Bringing the restriction to the data

CPS, 1996-2019

Starting in 1994, CPS records following for jobless respondents:

- Whether the respondent would be willing to accept a job
- Whether the worker is engaged in nine methods of active search
- If # search methods = 0, why no active search?

Consistent monthly merges available 1996+

- Non-employed worker willing to accept a job is
 - Active searcher if # search methods > 0
 - Passive searcher: # search methods = 0 & want (+ able) to work
- ► Time spent searching near linear in # of search methods (Mukoyama, Patterson, and Sahin 2018) ⇒ measure of search effort

The cyclicality of active search

	Active	Passive	A-NE	Avg. # of
	non-employed	non-employed	A-NE+P-NE	search methods
mean(x)	4.9	1.3	0.79	1.85
std(x)/std(Y)	11.0	5.7	1.50	2.65
corr(<i>x</i> , <i>Y</i>)	-0.89	-0.70	-0.75	-0.64

Note: Data from CPS, 1996-2019. A-NE and P-NE refer to active and passive non-employed Y indicates quarterly GDP. For second and third row, series are taken as (1) quarterly averages of seasonally adjusted monthly series, (2) logged, then (3) HP-filtered with smoothing parameter of 1600

Both frac. searching & # of search methods is countercyclical

 See also Osberg (1993), Shimer (2004), Faberman and Kudlyak (2016), Elsby, Hobijn and Sahin (2015), Mukoyama, Patterson, and Sahin (2018)

Job-finding rates of the active and passive non-employed

	A-NE o E	P-NE ightarrow E	A-P
	probability	probability	ratio
mean(x)	0.23	0.17	1/1.32
std(x)/std(Y)	8.67	8.87	9.53
$\operatorname{corr}(x, Y)$	0.85	0.32	0.48

Note: Data from CPS, 1996-2019. A-NE and P-NE refer to active and passive non-employed, "A-P ratio" refers to active-passive ratio of job-finding probabilities, Y indicates quarterly GDP. For second and third row, series are taken as (1) quarterly averages of seasonally adjusted monthly series, (2) logged, then (3) HP-filtered with smoothing parameter of 1600

- Mildy procyclical job-finding probability of passive non-employed
- Highly procyclical job-finding probability of active non-employed
- Thus, procyclical active-passive ratio in job-finding probabilities

Search and job-finding probabilities

Testing the restriction

Recall restriction:

$$\log\left(\frac{\overline{f}_{A,t}}{\overline{f}_{P,t}} - 1\right) = \log\left(\frac{\omega}{1 - \omega}\right) + 1 \cdot \log \overline{s}_{A,t}^*$$

Theory predicts unit elasticity

- Estimated elasticity from data: -7.61 (SE= 0.898)
- Robust to:
 - Different measures of $\overline{f}_{P,t}$ Alternative passive searcher measures
 - Controls for cyclical composition
 - Controls for duration dependence among active searchers

An unrestricted CES search aggregator

CES aggregator for search effort

• Aggregate search effort s_t given by CES aggregator over $s_{A,t}$ and $s_{P,t}$

$$\boldsymbol{s}_{t} = \left(\omega \, \boldsymbol{s}_{A,t}^{\rho} + (1-\omega) \boldsymbol{s}_{P,t}^{\rho}\right)^{\frac{1}{\rho}}$$

Aggregate active & passive search satisfy

$$\mathbf{s}_{A,t} = \int \mathbf{s}_{A,i,t} d\Gamma_t^{ne} = \left(\check{\Gamma}_t^{ne} \cdot ne_t\right) \cdot \bar{\mathbf{s}}_{A,t}^* \quad \& \quad \mathbf{s}_{P,t} = \int d\Gamma_t^{ne} = ne_t$$

• $ME_{A,t}$ and $ME_{P,t}$ are marginal efficiencies of active and passive search

$$ME_{A,t} = \frac{\partial \mathbf{s}_t}{\partial \mathbf{s}_{A,t}} = \omega \cdot \left(\frac{\mathbf{s}_t}{\mathbf{s}_{A,t}}\right)^{1-\rho}, \quad ME_{P,t} = \frac{\partial \mathbf{s}_t}{\partial \mathbf{s}_{P,t}} = (1-\omega) \cdot \left(\frac{\mathbf{s}_t}{\mathbf{s}_{P,t}}\right)^{1-\rho}$$

Returns to search

• The job-finding probability $f_{i,t}$ of a worker with search efficiency $s_{i,t}$ is

$$f_{i,t} = \mathbf{s}_{i,t} \cdot \left(\frac{m_t(\mathbf{s}_t, \mathbf{v}_t)}{\mathbf{s}_t}\right)$$

The search efficiency s_{i,t} of a worker supplying s_{A,i,t}

$$s_{i,t} = ME_{A,t} \cdot s_{A,i,t} + ME_{P,t} \cdot 1$$

by linear homogeneity of the CES search aggregator

• Nests prior case when $\rho = 1$:

$$\mathbf{s}_{i,t} = \omega \cdot \mathbf{s}_{A,i,t} + (1 - \omega) \cdot \mathbf{1}$$

Restriction from theory, redux

Relative job-finding probabilities, active vs. passive search

$$\frac{\overline{f}_{A,t}}{\overline{f}_{P,t}} - 1 = \frac{\left(ME_{A,t} \cdot \overline{s}_{A,t}^* + ME_{P,t}\right) \left(\frac{m_t(s_t, v_t)}{s_t}\right)}{ME_{P,t} \left(\frac{m_t(s_t, v_t)}{s_t}\right)} - 1$$

$$= \left(\frac{\omega}{1 - \omega}\right) \left(\frac{1}{\Gamma_t^{ne}(\overline{\varsigma}_t)\overline{s}_{A,t}^*}\right)^{1 - \rho} \cdot \overline{s}_{A,t}^*$$

$$\log\left(\frac{\overline{f}_{A,t}}{\overline{f}_{P,t}} - 1\right) = \log\left(\frac{\omega}{1 - \omega}\right) + (\rho - 1) \cdot \log \Gamma_t^{ne}(\overline{\zeta}_t) + \rho \cdot \log \overline{s}_{A,t}^*$$

• Return to data: test restriction in ρ , estimate ω and ρ

Regression estimates

	(1)	(2)	(3)	(4)	(5)	(6)
$\beta_{\rm Frac}$	-6.029*** (1.9596)	-5.374*** (0.5413)	-10.468*** (1.2716)	-2.771*** (0.4071)	-2.460*** (0.1465)	-3.295*** (0.2374)
$\beta_{\#}$	-3.905*** (1.3223)	-4.374*** (0.5413)	-	-0.950* (0.5268)	-1.460*** (0.1465)	-
β_0	1.041 (0.9789)	1.393*** (0.2520)	-1.679*** (0.3452)	-0.436 (0.4291)	-0.040 (0.0933)	-1.147*** (0.1553)
Passive searchers:	Want jo	b, discourag	ed	Wa	Want job, all	
Constrain $\beta_{Frac} + 1 = \beta_{\#}$?	No	Yes	_	No	Yes	_
F-test	$p(\beta_{Frac} + 1 = \beta_{\#})$	p(ho = 1)	p(ho = 1)	$p(\beta_{Frac} + 1 = \beta_{\#})$	p(ho = 1)	p(ho = 1)
	= 0.716	= 0.000	= 0.000	= 0.358	= 0.000	= 0.000
Ν	279	279	279	288	288	288
Implied ρ	_	-4.374	-11.468	_	-1.460	-4.295
Implied ω		0.801	0.157		0.490	0.241

Note: CPS, 1996-20019

C. Huckfeldt

Regression estimates, Pt. 1

	(1)	(2)	(3)
$\beta_{\rm Frac}$	-6.029***	-5.374***	-10.468***
	(1.9596)	(0.5413)	(1.2716)
$\beta_{\#}$	-3.905***	-4.374***	
	(1.3223)	(0.5413)	_
β_0	1.041	1.393***	-1.679***
	(0.9789)	(0.2520)	(0.3452)
Passive searchers:	Want job, discouraged		
Constrain $\beta_{Frac} + 1 = \beta_{\#}$?	No	Yes	-
F-test	$p(eta_{ ext{Frac}}+1=eta_{ extsf{#}})$	p(ho = 1)	p(ho = 1)
	= 0.716	= 0.000	= 0.000
Ν	279	279	279
Implied ρ		-4.374	-11.468
Implied ω	_	0.801	0.157

Note: CPS, 1996-20019

C. Huckfeldt

Regression estimates, Pt. 2

	(4)	(5)	(6)
$\beta_{\rm Frac}$	-2.771***	-2.460***	-3.295***
	(0.4071)	(0.1465)	(0.2374)
$\beta_{\#}$	-0.950*	-1.460***	_
	(0.5268)	(0.1465)	
β_0	-0.436	-0.040	-1.147***
	(0.4291)	(0.0933)	(0.1553)
Passive searchers:	Want job, all		
Constrain $\beta_{Frac} + 1 = \beta_{\#}$?	No	Yes	_
F-test	$p(\beta_{Frac} + 1 = \beta_{\#})$	p(ho = 1)	p(ho=1)
	= 0.358	= 0.000	= 0.000
Ν	288	288	288
Implied ρ		-1.460	-4.295
Implied w	_	0 490	0 241
		0.490	0.241

Note: CPS, 1996-20019

C. Huckfeldt

Takeaway

$$\log\left(\frac{\bar{f}_t^A}{\bar{f}_t^P} - 1\right) = \rho \cdot \log z_t + \log\left(\frac{\omega}{1 - \omega}\right) + (\rho - 1) \cdot \log \Gamma_t^{ne}(\check{\varsigma}_t) + \rho \cdot \log \bar{s}_t^{A,*}$$

- Reject restriction $\rho = 1$ (i.e., existing framework)
- Fail to reject restriction $\beta_{Frac} + 1 = \beta_{\#}$ (i.e., unrestricted framework)

Elasticity of substitution $\frac{1}{1-\rho}$ is 1/5 (int. + ext.) or 1/12 (ext. only)

Application 1: The marginal efficiency of active search over the business cycle

What is a CES search aggregator?

Equivalence: separate submarkets for active and passive search

$$m_t(\mathbf{s}_t, \mathbf{v}_t) = m_t \left(M \mathbf{E}_{A,t} \cdot \mathbf{s}_{A,t}, \alpha_t \cdot \mathbf{v}_t \right) + m_t \left(M \mathbf{E}_{P,t} \cdot \mathbf{s}_{P,t}, (1 - \alpha_t) \cdot \mathbf{v}_t \right)$$

with
$$\alpha_t = \frac{ME_{A,t} \cdot \mathbf{s}_{A,t}}{\mathbf{s}_t} = \frac{\mathbf{s}_{A,t}^{\rho}}{\mathbf{s}_{A,t}^{\rho} + \mathbf{s}_{P,t}^{\rho}}, \quad \rho \leq 1$$

(Obtains through constant returns)

• Vacancy share of active search α_t analogous to factor share

•
$$\rho < 0 \Rightarrow \alpha_t$$
 decreasing in $(\mathbf{s}_{A,t}/\mathbf{s}_{P,t})$

- Countercyclical $(\mathbf{s}_{A,t}/\mathbf{s}_{P,t}) \Rightarrow$ Procyclical α_t
- $ME_{A,t}$ and α_t both fall during recessions

Backing out the marginal efficiency of active search

Application 2: Baily-Chetty Formula

Appl. 2) Baily-Chetty Formula

Optimal UI described by Baily-Chetty formula:

where u is unemployment and R is the replacement rate

- Landais et al. (2018): if wages are perfectly rigid (+ other conditions), (BC) describes optimal replacement rate R
- Micro-elasticity $\frac{d \log u}{d \log R}$ typically taken as constant $\Rightarrow R$ constant
- But $\frac{d \log u}{d \log R}$ is proportional to the marginal efficiency of active search...

(BC)

Appl. 2) Baily-Chetty Formula, cont'd

Write micro-elasticity as

$$\frac{d \log u}{d \log R} = \frac{d \log u}{d \log f} \cdot \frac{d \log f}{d \log R}$$
$$\approx -(1 - \tilde{u}) \cdot \frac{d \log f}{d \log s} \cdot \frac{d \log s}{d \log s_A} \cdot \frac{d \log s_A}{d \log R}$$
$$= -(1 - \tilde{u}) \cdot \sigma \cdot \left[\omega \cdot \left(\frac{s_A}{s}\right)^{\rho}\right] \cdot \frac{d \log s_A}{d \log R}$$

- Note, $\rho < 0$, so the elasticity is not constant!
- Next, (i) take avg. d log f / d log R to be equal to 0.42 (Katz and Meyer, 1990), (ii) compute average d log s / d log R
- Use to obtain time series for $\frac{d \log u}{d \log R}$

Appl. 2) Baily-Chetty Formula, cont'd

• Define unemployed/employed consumption ratio: $\Delta_t = (c_t^u/c_t^e) - 1$

• Assume $U(c) = \log c$. Then, (BC) $\Rightarrow \Delta_t^* = (1 + \frac{d \log u}{d \log R})^{-1}$

 $\blacktriangleright \Delta_t^*$ higher during recessions due to marginal efficiency of active search

Conclusion

Conclusion

- Develop restriction from 3-state search model with constant MEoAS: Active-passive ratio in job-finding prob's has unit elasticity in active search effort
- Robustly reject restriction
- Relax perfect substitutability of active & passive search:
 - Develop new restriction, fail to reject
 - Estimate MEoAS that is decreasing in active search
- Implications:
 - Active search "less important" for finding a job during a recession
 - Scope for more generous UI during a recession

Extra slides

Why not looking?

- 1. "Believes no work available in area of expertise"
- 2. "Couldn't find any work"
- 3. "Lacks necessary schooling/training"
- 4. "Employers think too young or too old"
- 5. "Other types of discrimination"
- 6. "Can't arrange childcare"
- 7. "Family responsibilities"
- 8. "In school or other training"
- 9. "Ill-health, physical disability"
- 10. "Transportation problems"
- 11. "Other specify"

Time spent searching (MPS 2018)

198

Figure 1. The Average Minutes $(per\ day)$ Spent on Job Search Activities by the Number of Search Methods

Notes: Each bin reflects the average search time in minutes per day by the number of search methods that the individual reports using in the previous month. Data is pooled from 2003–2014 and observations are weighted by the individual sample weight.

Definitions of job search (MPS 2018)

D

m

TABLE 2—DEFINITIONS OF JOB SEARCH METHODS IN CPS AND AT US	
Contacting an employer directly or having a job interview	
Contacting a public employment agency	
Contacting a private employment agency	
Contacting friends or relatives	
Contacting a school or university employment center	
Checking union or professional registers	
Sending out resumes or filling out applications	
Placing or answering advertisements	
Other means of active job search	
Reading about job openings that are posted in newspapers or on the internet	
Attending job training program or course	
Other means of passive job search	

. .

ana

ATTAC

T 0

Note: The first nine are active, the last three are passive.

Search and job-finding probabilities

Dependent va	riable: Log active-	passive ratio in	I
in job-find	ling probabilities (minus one)	
	(1)	(2)	(3)
Log # of search methods	-7.609***	-4.857***	-3.006***
	(0.8975)	(0.3933)	(0.1487)
Time trend	-8.0e-4*	-4.3e-4**	-7.9e-5
	(4.5e-4)	(2.0e-4)	(7.9e-5)
Constant	4.004***	2.808***	3.228***
	(0.4755)	(0.2180)	(0.0947)
$p(eta_{\#}=1)$	0.000	0.000	0.000
Ν	279	288	288
Dassivo coarshors	Want job	Want job	NIIF
	(discouraged)	(all)	INIII
000 400 4 0040			

Elasticity of active-passive ratio in job-finding probabilities

CPS, 1996-2019

Elasticity of the active-passive ratio: adjustment for cyclical composition 1/2

Dependent va	riable: Log active	-passive ratio in	
in job-find	ling probabilities	(minus one)	
	(1)	(2)	(3)
Log # of search methods	-6.038***	-2.973***	-2.051***
	(0.7340)	(0.3299)	(0.1943)
Time trend	-2.2e-3***	-1.4e-3***	-5.5e-4***
	(4.1e-4)	(1.9e-4)	(1.1e-4)
Constant	3.853***	2.203***	2.328***
	(0.5340)	(0.2413)	(0.1422)
$p(eta_{\#}=1)$	0.000	0.000	0.000
Ν	326	334	334
Passive searchers:	Want job	Want job	Nilf
	(discouraged)	(all)	INIII

CPS, 1996-2019

Population weights of 72 subgroups held constant in regression groups, where subgroups are defined by reason for unemployment (if unemployed), education level, age group, and gender

Elasticity of the active-passive ratio: adjustment for cyclical composition 2/2

Dependent variable: Log active-passive ratio in				
in job-finding probabilities (minus one)				
	(1)	(2)	(3)	
Log # of search methods	-3.464***	-2.012***	-2.759***	
	(0.8838)	(0.4994)	(0.5131)	
Time trend	-1.6e-3***	-1.9e-3***	-1.5e-3***	
	(6.0e-4)	(3.5e-4)	(3.6e-4)	
Constant	1.652***	1.609***	2.156***	
	(0.6256)	(0.3669)	(0.3746)	
$p(eta_{\#}=1)$	0.000	0.000	0.000	
Ν	296	328	324	
Passive searchers:	Want job	Want job	Nilf	
	(discouraged)	(all)	INIII	

CPS, 1996-2019

Population weights of 360 subgroups held constant in regression groups, where subgroups are defined by reason for unemployment (if unemployed), education level, age group, gender, and labor market status a year ago (employed, temporary layoff, unemployed, passive searcher, other nonparticipant)

Elasticity of the active-passive ratio: duration dependence

Dependent variable: Log active-passive ratio in				
in job-finding probabilities (minus one)				
	(1)	(2)	(3)	
Log # of search methods	-1.717***	-1.581***	-1.748***	
	(0.3827)	(0.2195)	(0.1066)	
Time trend	-1.6e-4	4.5e-5	2.0e-4***	
	(2.6e-4)	(1.5e-4)	(7.3e-5)	
Constant	0.832***	1.073***	2.595***	
	(0.2234)	(0.1281)	(0.0623)	
$p(eta_{\#}=1)$	0.000	0.000	0.000	
Ν	288	288	288	
Passive searchers:	Want job	Want job	NUIF	
	(discouraged)	(all)	INIII	
CPS. 1996-2019				