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A An approximate data-generating model

In this appendix, after describing the canonical Bils (1985) regression, we detail the ap-

proximate DGM introduced in Section 2 of the main text and use it to discuss inference of

the canonical Bils regressions, where all new hires are pooled together, and our preferred

regression specifications, where we distinguish between new hires from unemployment and

employment. We also discuss inference with staggered contracting, and we detail how the

DGM is consistent with the theoretical model of procyclical job upgrading that we develop

in Section 3 of the main text. Throughout this appendix, we develop testable predictions

that we employ in the main text of the paper that would allow us to reject the approxi-

mate DGM. As we discuss in the main text and mention here, however, the data are fully

consistent with the approximate model.

A.1 Bils (1985) regressions

Bils (1985) estimates the following regression in first differences:

∆ logwit = ∆x′it · πx + πu ·∆ut + πn · I{Nit = 1}+ πnu · I{Nit = 1} ·∆ut + eit, (1)

which regresses individual wages at time t on a cyclical indicator taken to be the unem-

ployment rate and allows for a different cyclicality for continuing workers and new hires.

The coefficient πu gives the common wage semi-elasticity for new and continuing workers,

while the coefficient πnu measures the excess semi-elasticity for new hires. We note that in

the original Bils specification, the indicator function is directly applied to first-differenced

unemployment (as opposed to being first-differenced itself).

An alternative way to control for unobserved permanent heterogeneity is to estimate a

regression in fixed effects. The fixed-effect version of (1) is

∆m logwit = ∆mx′it · πx + πu ·∆mut + πn · I{Nit = 1}+ πnu · I{Nit = 1} ·∆mut + eit, (2)

where ∆m indicates mean-differences.

A.2 An approximate DGM with a cyclical composition effect

The DGM relates individual wages to individual factors, the state of the cycle (measured

by unemployment) and to job match quality. There is no true excess wage flexibility for

new hires. We then model match quality as procyclical for workers making job-to-job

transitions (consistent with the structural model developed later in the paper). Accordingly,

we can then show that because job-changers drive cyclicality among new hires, the Bils’
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regressions will generate upward biased estimates of new hire wage flexibility. Finally, we

can use the DGM to motivate a test of whether new hires wages are excessively flexible.

Under the assumption that match quality is on average acyclical for new hires coming from

unemployment, we get an unbiased estimate of new hire wage flexibility by conditioning

separately on this group of new hires.

Under the approximate DGM,

logwit = ψ0 + x′itψx + ψu · ut + αi + αit + εit, (3)

where ψ0 is a constant, ψx describes the relation of wages to observable characteristics xit,

ψu gives the common wage semi-elasticity for new and continuing workers, αi is a time-

invariant person fixed effect, αit is unobserved match quality for individual i at a given job

at time t, and εit is an iid error term.

We assume average match quality ᾱit evolves as follows: Let I {EEit = 1} be an indicator

that individual i is a new hire who has changed jobs and let I {ENEit = 1} be an indicator

that an individual is a new hire from unemployment. Then we assume that the average

match quality ᾱit evolves according to

∆ᾱit = I {EEit = 1} ·
[
ψEEn + ψEEnu ·∆ut

]
+ I {ENEit = 1} · ψENEn . (4)

Equation (4) describes a process for average match quality in which workers in continuing

matches experience no change in match quality, workers hired from non-employment incur

a level change in match quality independent of the cycle, and job changers incur a change

in match quality that depends on a level component and the change in unemployment. The

procyclical growth in match quality for job changers is consistent with the theoretical model

of procyclical job upgrading that we develop in the later sections of the main text. As the

unemployment rate falls, workers in existing jobs are more likely to move to better matches,

and vice versus when the rate falls. By contrast, workers coming from unemployment have

acyclical changes in match quality, as they are more likely to take the first job they find.

We elaborate on this mechanism for job changers below (see Section A.6). In Section 4

of the main text, we verify that a similar condition also holds for job-changers in the full

equilibrium model.

A.3 Inference with a first-difference estimator

To see how the typical regression of the literature may yield misleading evidence of new

hire wage flexibility, we first take first differences of the DGM (3), integrate over changes
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in unobserved match quality ∆αit over new hires, and then combine with (4):

∆ logwit = ∆x′itψx + ψu ·∆ut
+I {EEit = 1} ·

[
ψEEn + ψEEnu ·∆ut

]
+I {ENEit = 1} · ψENEn + ∆εit. (5)

We then note that we can rewrite the Bils equation (1) in first differences as

∆ logwit = ∆x′itπx + πu ·∆ut
+I {EEit = 1} · [πn + πnu ·∆ut]

+I {ENEit = 1} · [πn + πnu ·∆ut] + eit, (6)

distinguishing between the two types of new hires. Under our DGM, the Bils regression

is misspecified. In particular, it imposes that the wage semi-elasticities of job changers

and new hires from unemployment are equal and given by πnu. By contrast, the DGM

implies that the elasticity for job changers is ψEEnu < 0 and the elasticity for new hires from

unemployment is zero. Accordingly, taking the Bils equation to the data will lead to an

estimate π̂nu < 0, but this will be due to the composition bias captured by ψEEnu . Indeed,

as we show next, π̂nu ∝ ψEEnu .

In particular, from equations (1), (5) and (6), we have

π̂nu =
CovM

X
(∆ logwit, I {Nit = 1} ·∆ut)

VarM
X

(I {Nit = 1} ·∆ut)

= ψEEnu ·
VarM

X
(I {EEit = 1} ·∆ut)

VarM
X

(I {Nit = 1} ·∆ut)
≤ 0,

where Xit = {∆xit,∆ut, I {Nit = 1}}, MX = I − X (X ′X)−1X ′ is a linear operator that

residualizes a vector with respect to X, and the superscript MX denotes that we are com-

puting covariances and variances with respect to the residualized arguments. Note, the

literature takes the coefficient πnu as a measure of the excess contractual flexibility of new

hire wages; but under the approximate DGM, π̂nu is estimated to be non-zero solely through

its proportionality to ψEEnu .

We can then test whether the data is consistent with the simple DGM by estimating

equation (6) allowing for separate interaction terms for job changers versus new hires from
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unemployment:

∆ logwit = ∆x′itπx + πu ·∆ut
+I {EEit = 1} ·

[
πEEn + πEEnu ·∆ut

]
+I {ENEit = 1} ·

[
πENEn + πENEnu ·∆ut

]
+ eit, (7)

Under the null of our DGM,

πEEnu = ψEEnu

πENEnu = 0

implying that (i) the excess wage cyclicality for job changers reflects composition bias and

(ii) there is no excess wage cyclicality for new hires from unemployment. Of course, the data

alone does not tell us the source of excess wage cyclicality for job changers. However, we can

test the null that there should be no excess cyclicality for new hires from unemployment,

i.e., whether πENEnu = 0. Under our identifying assumptions πENEnu provides a composition-

free estimate of the excess wage flexibility of new hires (in contrast to πEEnu , which reflects

cyclical composition). When we estimate equation (7) in Section 2.3 of the main text, we

recover coefficients consistent with the null of πENEnu = 0.

A.4 Inference with a fixed-effects estimator

The fixed-effects estimator shares the same crucial properties: we can apply it to a subset

of our sample and obtain πu and πENEnu as consistent estimators for ψu and ψENEnu .

Similar to how we proceed in Section A.3, we first consider a fixed-effects estimator

applied to the approximate DGM. We first take mean differences of equation (3), integrate

over changes in unobserved match quality ∆mαit and obtain

∆m logwit = ψu ·∆mut + ∆mᾱit + ∆mεit, (8)

where ∆mᾱit denotes average mean deviations in match quality. However, it requires more

algebra to express (8) in a form that is readily comparable to the canonical regression

equation, as we must generate expressions for mean deviations of unobserved match quality.

For ease of exposition, we assume in the following that individuals in the sample only

make at most one job-transition; i.e., individuals will experience either one ENE transition,

one EE transition, or will be continuing workers for the entire sample period. The length

of the sample is denoted as T .

We first consider the mean-deviation of a worker who makes either a EE or a ENE
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transition at period τ i. Match quality for such newly hired worker evolves as

αit =

αi,0 if t < τ i

αi,0 + ∆ατ i if t ≥ τ i
, (9)

where ∆ατ i is the change in match quality experienced by the worker at time τ i. When we

average over T , we obtain the fixed-effect αFEi , where

αFEi = αi,0 +
T − τ i + 1

T
·∆ατ i . (10)

Then, the associated mean-deviations of the average match quality of an EE or ENE

worker who moves to a new job at period τ i is given by

∆mαit =

−
(
T−τ i+1

T

)
·∆ατ i if t < τ i(

τ i−1
T

)
·∆ατ i if t ≥ τ i

. (11)

Integrating over unobserved match quality by types of job transition, we obtain

∆mᾱit =

−
(
T−τ i+1

T

)
·∆ᾱτ i if t < τ i(

τ i−1
T

)
·∆ᾱτ i if t ≥ τ i

(12)

where, analogously to equation (4), ∆ᾱτ i is given by

∆ᾱτ i = I {ever EEi = 1} ·
[
ψEEn + ψEEnu ·∆uτ i

]
+ I {ever ENEi = 1} · ψENEn , (13)

and where I {ever EEi = 1} is an indicator variable equal to one if the worker makes one

EE transition over the sample period and zero otherwise, I {ever ENEi = 1} is an indicator

variable equal to one if a worker makes an ENE transition over the sample period and zero

otherwise, and τ i is the date of the job transition of a worker who makes either an EE or

ENE transition.

Finally, we can rewrite (12) as

∆mᾱit =

[
I {t < τ i} ·

(
−T − τ i + 1

T

)
+ I {t ≥ τ i} ·

(
τ i − 1

T

)]
∆ᾱτ i . (14)

Equations (8), (13), and (14) describe the approximate DGM in fixed effects.

We next rewrite the analogue of our baseline regression equation for wage cyclicality (7)
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in fixed effects,

∆m logwit = ∆mx′itπx + πu ·∆mut

+I {EEit = 1} ·
[
πEEn + πEEnu ·∆mut

]
+I {ENEit = 1} ·

[
πENEn + πENEnu ·∆mut

]
+ eit, (15)

While it was readily apparent that the preferred regression equation in first-differences

would allow consistent estimates of the parameters of the DGM, it is perhaps less clear

that this is true for our fixed effects estimator. Here, we show that πENEnu is a consistent

estimator of ψENEnu , πu is a consistent estimator for ψu when we estimate equation (15) over

a subset of the full sample, but that πEEnu is a biased estimator for ψEEnu .

A.4.1 Consistent estimator for ψENEnu in fixed-effects

Let Xit = {∆mxit,∆
mut, I {EEit = 1} , I {EEit = 1} ·∆mut, I {ENEit = 1}} and let MX

denote the linear operator that residualizes a vector with respect to X. Then, by the

Frisch-Waugh theorem,

π̂ENEnu =
CovX (∆m logwit, I {ENEit = 1} ·∆mut)

VarX(I {ENEit = 1} ·∆mut)
(16)

=
CovX (∆x′itψx + ψu ·∆mut + ∆mᾱit + ∆mεit, I {ENEit = 1} ·∆mut)

VarX(I {ENEit = 1} ·∆mut)

= 0 +
CovX (∆mᾱit, I {ENEit = 1} ·∆mut)

VarX(I {ENEit = 1} ·∆mut)

=
CovX

(
I {ever ENEi = 1} · I {t < τ i}

(
−T−τ i+1

T

)
· ψENEn , I {ENEit = 1} ·∆mut

)
VarX(I {ENEit = 1} ·∆mut)

+
CovX

(
I {ever ENEi = 1} · I {t ≥ τ i} ·

(
τ i−1
T

)
· ψENEn , I {ENEit = 1} ·∆mut

)
VarX(I {ENEit = 1} ·∆mut)

= 0

where first equality follows from equation (15) and residualization, the second equality from

equation (8), the third equality from residualization, the fourth equality from equations (13)

and (14), and the final equality follows from the zero covariance of τ i and I {ENEit = 1} ·
∆mut.

1 The estimates we obtain in Section 2.3 of the main text are consistent with the null

of πENEnu = 0.

1 Note, Cov(τ i,∆
mut) = 0 obtains from the random initial condition for ut.
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A.4.2 Consistent estimator for ψu in fixed-effects

First, note that we cannot obtain consistent estimates of ψu from a full sample that includes

workers who ever make an EE transition. As shown in equation (13), the mean deviations of

wages for ever-EE workers includes a term that is proportional to the change in the unem-

ployment rate of the period that they make a job-transition. As the fixed-effects regression

does not include this as an explanatory variable, estimates of ψu will suffer from omitted

variable bias. We can, however, derive consistent estimates of ψu if we consider a restricted

sample that omits ever-EE workers. LetXit = {∆mxit, I {ENEit = 1} , I {ENEit = 1} ·∆mut}
and let MX denote the linear operator that residualizes a vector with respect to X.

Then,

π̂u =
CovX (∆m logwit,∆

mut)

VarX(∆mut)
(17)

=
CovX (∆x′itψx + ψu ·∆mut + ∆mᾱit + ∆mεit,∆

mut)

VarX(∆mut)

= ψu +
CovX (∆mᾱit,∆

mut)

VarX(∆mut)

= ψu +
CovX

(
I {ever ENEi = 1} · I {t < τ i} ·

(
−T−τ i+1

T

)
· ψENEn ,∆mut

)
VarX(∆mut)

+
CovX

(
I {ever ENEi = 1} · I {t ≥ τ i} ·

(
τ i−1
T

)
· ψENEn ,∆mut

)
VarX(∆mut)

= ψu

where first equality follows from equation (15) and residualization, the second equality from

equation (8), the fourth equality from equations (13) and (14), and the final equality follows

from the zero covariance of τ i and ∆mut.

A.4.3 Biased estimator for ψEEnu in fixed-effects

Let Xit = {∆mxit,∆
mut, I {EEit = 1} , I {ENEit = 1} , I {ENEit = 1} ·∆mut} and let MX

denote the linear operator that residualizes a vector with respect to X. Without loss of
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generality, assume that ψENEn = 0 and ψEEn = 0. Then,

π̂EEnu =
CovX(∆m logwit, I {EEit = 1} ·∆mut)

VarX(I {EEit = 1} ·∆mut)
(18)

=
CovX(∆x′itψx + ψu ·∆mut + ∆mᾱit + ∆mεit, I {EEit = 1} ·∆mut)

VarX(I {EEit = 1} ·∆mut)

=
CovX(∆mᾱit, I {EEit = 1} ·∆mut)

VarX(I {EEit = 1} ·∆mut)

= ψEEnu ·
CovX(

(
τ i−1
T

)
· I {EEit = 1} ·∆uτ i , I {EEit = 1} ·∆mut)

VarX(I {EEit = 1} ·∆mut)

+
CovX(I {t < τ i} ·

(
−T−τ i+1

T

)
· I {ever EEi = 1} · ψEEnu ·∆uτ i , I {EEit = 1} ·∆mut)

VarX(I {EEit = 1} ·∆mut)

+
CovX(I {t > τ i} ·

(
τ i−1
T

)
· I {ever EEi = 1} · ψEEnu ·∆uτ i , I {EEit = 1} ·∆mut)

VarX(I {EEit = 1} ·∆mut)

6= ψEEnu

where the first equality follows from equation (15) and residualization, the second equality

from (8), and the fourth equality follows from equations (13) and (14). At the fourth equal-

ity, however, we see two additional terms on the second and third line where a component

of demeaned average match quality is correlated with the demeaned unemployment rate in

the periods before and after the period a worker is an EE new hire, from equations (11)

and ( 12). Even if these terms summed to zero, (τ i − 1)/T < 1 and Cov(∆uτ i ,∆
mut) 6=

Var(∆mut), so we would obtain a biased estimate.

A.5 Robustness to staggered contracting

The structural model we develop in the paper allows for staggered wage contracting, where

the likelihood of renegotiation obeys a Poisson process. To introduce staggered contracting,

we slightly modify the approximate DGM:

logwit = logwfit + x′itψx + αi + αit + εit (19)

where wfit is the prevailing wage at a firm and is recontracted with probability (1− λ):

logwfit =

ψ0 + ψu · ut w/ prob. (1− λ)

logwfit−1 w/ prob. λ

With a bit of algebra, one can then develop the analogue of equation (7), our baseline
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relation for wage cyclicality which allows for separate interactions for job changers and new

hires from unemployment.

∆ logwit = ∆x′itπx + πu · (1− λ)

∞∑
τ=0

λτ∆ut−τ

+ I {EEit = 1} ·
[
πEEn + πEEnu ·∆ut

]
+ I {ENEit = 1} ·

[
πENEn + πENEnu ·∆ut

]
+ eit, (20)

Note the difference with (7) is that the cyclical indicator is now a distributed lag of current

and past unemployment growth rates as opposed to just the current one. In the final section

of this appendix, we show that all our results are robust to this alternative formulation;

that is, the estimate of πENEnu is still zero, implying no excess wage flexibility for new hires.

The estimate of πEEnu remains negative, but this reflects cyclical composition bias under our

identifying assumptions.

A.6 Average match quality with constant wage premium and cyclical

shares

We detail here how the DGM is consistent with the theoretical model of procyclical job

upgrading that we develop in the paper. In particular, we show we can write the procyclical

growth in average match quality for job changers in equation (4) as generated by a constant

wage premium across types of jobs and cyclical changes in the probability of moving across

job types, as predicted by our full equilibrium model.

Suppose that there are two types of match quality, good and bad. Bad matches are

paid a fraction φ of good matches. We observe whether a worker makes a direct job-to-

job transition or one with an intervening spell of nonemployment, but nothing else about

the job transition. The probability of making a bad-to-good (or good-to-bad) transition

depends on the cycle for job-changers, but not for new hires from unemployment.

Then, conditional on a EE transition,

∆αit =


− log φ w/ prob. δBG,t = ηBG,0 + ηBG,u ·∆ut

log φ w/ prob. δGB,t = ηGB,0 + ηGB,u ·∆ut
0 otherwise

(21)

where δBG,t indicates the fraction of job-changers who make a bad-to-good transition and

where

δBG,t + δGB,t + δBB,t + δGG,t = 1. (22)
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Conditional on a ENE transition,

∆αit =


− log φ w/ prob. δBNG,t = ηBNG,0

log φ w/ prob. δGNB,t = ηGNB,0

0 otherwise

(23)

where δBNG,t is the fraction of new hires from unemployment who make a bad-to-good

transition (with an intervening spell of unemployment) and where

δBNG,t + δGNB,t + δBNB,t + δGNG,t = 1. (24)

If we integrate over the probability of different types of match transitions, we obtain

∆ᾱit = I {EEit = 1} · (− log φ) ·
(
ηBG,0 − ηGB,0

)
+ I {EEit = 1} · (− log φ) ·

(
ηBG,u − ηGB,u

)
·∆ut

+ I {ENEit = 1} · (− log φ) ·
(
ηBNG,0 − ηGNB,0

)
(25)

This is nested in (4), where

ψEEn = (− log φ) ·
(
ηBG,0 − ηGB,0

)
ψEEnu = (− log φ) ·

(
ηBG,u − ηGB,u

)
ψENEn = (− log φ) ·

(
ηBNG,0 − ηGNB,0

)
A.7 Robustness to alternative approximate DGMs

Here, we consider three deviations to our preferred regression specification that are moti-

vated by three changes to the baseline approximate DGM. As in the text, we consider the

canonical regression, where all new hires are treated the same, and our preferred specifi-

cation, where new hires from employment and unemployment are permitted separate wage

cyclicalities. Results are given in Tables A.1 and A.2. First, we consider the case in which

the average change in match quality for workers making job-to-job transitions is propor-

tional to the level unemployment rate rather than the change in the unemployment rate.

Hence, whereas the common cyclical indicator is expressed in first differences and mean

deviations, the interaction term is expressed in the level HP-filtered unemployment rate.

Second, we consider the case of staggered contracting, where the relevant cyclical indicator

is the distributed lag of unemployment, as in Section A.5, where we set λ = 11/12. The

third case we consider is a combination of the first two. As seen in Table A.1, we obtain

a new hire effect à la Bils (1985) across all three specifications. We confirm in Table A.2,

however, that the effect is entirely driven by new hires from employment, and there is no
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evidence for excess wage cyclicality for new hires from non-employment.
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Table A.1: Alternative cyclical indicators: canonical regression

First differences Fixed-effects

UR
−0.520∗∗∗ −1.090∗∗∗ −1.125∗∗∗ −0.192∗∗∗ −0.965∗∗∗ −0.995∗∗∗

(0.0992) (0.1377) (0.1401) (0.0602) (0.0699) (0.0700)

UR · I(new)
−0.280∗∗ −0.896∗ −0.211∗ −0.183∗∗∗ −1.196∗∗∗ −0.194∗∗∗

(0.1224) (0.4583) (0.1235) (0.0612) (0.3246) (0.0612)

I(new)
0.292∗∗ 0.010∗∗ 0.222∗ 0.172∗∗∗ −0.011∗∗∗ 0.183∗∗∗

(0.1236) (0.0040) (0.1247) (0.0617) (0.0017) (0.0617)

Change to cyclical indicators?
Level

Distr. lag
Level & Level

Distr. lag
Level &

Inter’n Distr. lag Inter’n Distr. lag

No. observations 321,396 321,396 321,396 378,661 378,661 378,661

No. individuals 57,265 57,265 57,265 57,265 57,265 57,265

No. new hires 14,674 321,396 321,396 18,096 18,096 18,096

* p < 0.10, ** p < 0.05, *** p < 0.01

Dependent variable: log hourly real wage. Controls for education, union coverage, marital status, a quadratic in tenure, and a linear time trend. Robust
standard errors in parenthesis, clustered by individual.
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Table A.2: Alternative cyclical indicators: preferred specification

A.2A. First differences

Level interactions Distributed lag
Level interactions &

distributed lag

UR
−0.482∗∗∗ −0.487∗∗∗ −1.060∗∗∗ −1.051∗∗∗ −1.088∗∗∗ −1.091∗∗∗

(0.0993) (0.0989) (0.1380) (0.1380) (0.1404) (0.1400)

UR · I(EE)
−0.334∗∗ −0.355∗∗ −1.649∗∗ −1.452∗∗ −0.273∗ −0.294∗∗

(0.1467) (0.1454) (0.6793) (0.6209) (0.1475) (0.1463)

UR · I(ENE)
−0.203 −0.090 −0.161 −0.257 −0.119 0.000
(0.2245) (0.2460) (0.6597) (0.7312) (0.2252) (0.2465)

Unemp. spell for ENE 0+ 1+ 0+ 1+ 0+ 1+
P (πEE

nu = πENE
nu ) 0.627 0.356 0.112 0.209 0.564 0.305

A.2B. Fixed effects

Interaction of levels Distributed lag
Interaction of levels &

distributed lag

UR
−0.169∗∗∗ −0.170∗∗∗ −0.957∗∗∗ −0.957∗∗∗ −0.972∗∗∗ −0.972∗∗∗

(0.0608) (0.0608) (0.0704) (0.0704) (0.0705) (0.0705)

UR · I(EE)
−0.304∗∗∗ −0.287∗∗∗ −1.590∗∗∗ −1.547∗∗∗ −0.318∗∗∗ −0.300∗∗∗

(0.0822) (0.0805) (0.5028) (0.4726) (0.0823) (0.0806)

UR · I(ENE)
0.081 0.173 0.059 0.438 0.074 0.166

(0.1059) (0.1106) (0.5388) (0.5934) (0.1057) (0.1103)

Unemp. spell for ENE 0+ 1+ 0+ 1+ 0+ 1+
P (πEE

nu = πENE
nu ) 0.004 0.001 0.023 0.008 0.003 0.001

Robust standard errors in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01

Dependent variable: log hourly real wage. Controls for education, union coverage, marital status, a quadratic in tenure, and a linear time trend. Robust
standard errors in parenthesis, clustered by individual.
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B Empirical appendix

B.1 More on robustness of empirical results

In this section, we discuss several issues related to the robustness of our empirical findings.

B.1.1 Non-employment versus unemployment

We interpret our findings for the wage cyclicality of workers from non-employment to be

relevant to understanding the wage cyclicality of workers from unemployment. The SIPP

offers monthly data on search activity, but many workers do not report active search for

each month of a given spell. Hence, there is no straightforward criteria by which to classify

a complete non-employment spell as one of “unemployment”, which would be necessary to

refine our measure of ENE transitions to one of EUE transitions.

We have explored one possibility, however, which is to classify a new hire as a new hire

from unemployment (EUE) if the worker reports searching for at least a single month of

her non-employment spell. Roughly 72% of new hires from non-employment in our sample

report searching for at least one month of non-employment. Of those workers, they search

for around 86% of the total duration of their non-employment spell. From this measure,

we can define three types of new hires: EE, EUE, and EOE (new hires from OLF). We

estimate a variation of our baseline specification with three interaction terms for each type

of new hire. The results are reported in Table B.1. Our findings are virtually unchanged. If

anything, the point estimates suggest that the wages of EUE workers are less cyclical than

the wages of ENE workers, but this difference is not statistically significant.

B.1.2 More findings on cyclical selection from non-employment

In Section 2.4 of the main paper, we discuss the robustness of our findings when isolate

groups of ENE workers who are less likely to be subject to some form of cyclical composition

bias. In Tables 4 and 5 of the main text, we isolate workers with shorter durations of non-

employment, where we alternatively do not control or control for occupation switchers.

Here, we do the same, but for with industry switchers. Results are given in Tables B.2 and

B.3 and entirely consistent with those presented in Tables 4 and 5.

B.2 The Survey of Income and Program Participation

Here, we discuss issues related to the Survey of Income and Program Participation as they

pertain to our analysis.
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B.2.1 Overview

The SIPP is administered by the U.S. Census Bureau and is designed to track a nationally

representative sample of U.S. households. The SIPP is organized by panel years, where

each panel year introduces a new sample of households. From 1990 to 1993, the Census

Bureau would introduce a new panel on an annual basis, where each panel is administered

for a period of 32 to 40 months. Hence for certain years in the early 1990s, data is available

from multiple panels, each consisting from around 15,000 to 24,000 households. Starting

in 1996, the Census changed the structure of the survey to follow contiguous panels. Since

the redesign, new panels have been introduced in 1996, 2001, 2004, and 2008. For each of

these panels, the Census has followed a larger sample of households (e.g. 40,188 in 1996)

over a longer period. There are two inter-panel periods for which we have no coverage:

April 2000 to February 2001, and February 2008 to August 2008. We use the SIPP sample

weights for all of our analysis. For the periods where there is panel overlap, we adjust the

weights according to the procedure recommended by Census (e.g., see SIPP User’s Guide,

2001, pages 8-9).

Survey respondents are interviewed every four months on activity since the previous

interview, a period referred to as a wave. However, some information (including for example,

employment) is available at different frequencies within a wave. For example, the SIPP

provides weekly measures of employment status, monthly measures of earnings, and job

identifiers are constant for the entire period of the wave. As described in the main text, we

combine monthly earnings records specific to each job to discern the pattern of job flows

and sources of earnings over the wave.

The SIPP has several advantages relative to other commonly used panel data sources

such as the PSID or the NLSY. Relative to the PSID, the SIPP follows a larger number

of households, is nationally representative, and has more frequent observations. For the

purposes of this paper, the PSID also suffers the disadvantage that it is difficult to identify

wage earnings with a particular job in years where multiple jobs are held. Relative to the

NLSY, the SIPP follows a larger number of households, but more importantly, multiple

cohorts. Relative to both surveys, the SIPP suffers the disadvantage that it follows any

particular individual for a shorter overall duration. But as mentioned before, the SIPP

collects rich retrospective information that gets around problems of left-censoring: in par-

ticular, we observe start dates for jobs held during the first wave but started prior to the

first interview (including the 1990 to 1993 panels). We then use our earnings-based mea-

sures of job transitions to determine the following sequence of jobs spells for the rest of the

sample.2

2 For each wave, the survey contains fields for up to two jobs. The survey maintains longitudinally
consistent job IDs for each individual and tracks certain job-specific characteristics at a monthly frequency,
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One frequently noted problem with the SIPP is the so-called “seam effect,” described

by the Census Bureau as follows:

This effect results from the respondent tendency to project current circumstances back

onto each of the 4 prior months that constitute the SIPP reference period. When that

happens, any changes in respondent circumstances that occurred during that 4-month period

appear to have happened in the first month of the reference period. A disproportionate

number of changes appear to occur between the fourth month of one wave and the first month

of the following wave, which is the “seam” between the two wave–hence the terminology.

(SIPP User’s Guide 2001, pages 1-7)

For our purposes, such an effect could potentially generate problems, for example, with

aligning job-changes with changes in the unemployment rate. This sort of measurement

error has the potential to bias coefficient estimates towards zero. Having experimented with

different measures of the unemployment rate that should not lead to such bias, e.g. average

unemployment rate over the wave, we believe the quantitative impact of such measurement

error is negligible. While a downward bias would make it harder to reject the null hypothesis

of no excess cyclicality of ENE wages, we recover both small negative and positive coefficient

estimates for ENE workers, so we are not suspicious that such a bias could be driving our

results. Moreover, given there is no ex-ante reason to believe that such measurement error

should differentially effect ENE versus EE workers, the bias would not make it easier to

reject that excess wage cyclicality of EE and ENE workers are the same.

A second problem from the seam effect is discussed in Gottschalk (2005), which is the

presence of measurement error for the amount of earnings in non-interview months of a

wave. Thus, we follow Gottschalk (2005) and others in only using the fourth month wage

in our analysis.

Finally, we note that some sort of “seam bias” is present for any retrospective data. In

this sense, the SIPP provides an almost-ideal survey instrument, as it offers a representative

sample for multiple cohorts with a rich set of variables, but also allows the researcher to

follow workers over several years with relatively high frequency interviews, limiting the

duration over which the seam bias can influence survey responses.

including earnings. We follow the procedure detailed by Stinson (2003) to correct inconsistent job identifi-
cation variables for the 1990 to 1993 panels. We use monthly earnings data within waves to determine at
which job the individual is working and for what months the individual is working at each potential job.
From these data, we determine within a wave whether an individual made a job transition; and whether the
job transition was characterized by an intervening period of non-employment.
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B.2.2 Variables and sample selection

Following Bils (1985), we only consider males between the ages of 20 and 60. We drop

observations for individuals who are disabled, self-employed, serving in the armed forces,

or enrolled in school full-time. We use the monthly employment status recode variable to

identify and drop observations where an individual reports not working for the entire month.

We drop observations where an individual works less than 10 or greater than 100 hours a

week. We also drop observations where the wage is top-coded or below the minimum wage.

All observations are associated with a job-specific wage. As such, we drop observations

where a worker is working at multiple jobs. Such observation may either reflect a job-to-

job transition or multiple job-holding; but in either case, it is difficult to determine which

observation should be included in the estimation.

We use hourly wages as our measure of earnings. In some instances, SIPP includes hourly

wages and total monthly earnings. In cases where the hourly wage is directly available, we

use that as our measure of wages. In cases where the hourly wage is not available, we

construct a measure of implied hourly wages from monthly earnings divided by the product

of weeks worked and hours worked per week. For the 1990 to 1993 waves, all of these

variables are job-specific. Starting with the 1996 panel, the measure for weeks worked

is no longer job-specific. We instead construct a measure of weeks worked from weeks

with job minus weeks absent from work. Note that the implied hourly wage measure is

subject to greater measurement error at the beginning of a job, when an individual does

not necessarily spend a full month working at a job. In such cases, we use the second

observation as the “new hire” wage. There is no considerable change for the fixed effects

regression if we do not apply this correction, but many of the coefficients are not statistically

significant for the first-differences regression, including for new hires from employment. We

deflate wages using a four-month average of the PCE. Covariates include four indicators

for educational attainment, separate indicators for union coverage and marital status, a

quadratic in job tenure, and a time trend. We use combined weights across panels, applying

the method recommended by the SIPP User’s Guide (2001). We use monthly prime-aged

male unemployment.

B.2.3 Identifying recalls

The SIPP maintains job-specific longitudinally consistent employment information over

waves for which an individual reports non-zero employment. For such case, the SIPP

maintains the same job identifier for a given job, allowing users to distinguish new jobs

from “recalls” (to adopt the terminology of Fujita and Moscarini (2017). Table B.4 gives

an example employment history of an individual who works at a job, spends four months
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in non-employment, but returns to the same job. The SIPP correctly records that the

individual returned to the job that she left.

But starting in 1996, the SIPP resets employment records for individuals who are with-

out employment for an entire wave. If individuals return to a previously held job after

spending an entire wave in non-employment, the SIPP will incorrectly record the individual

as starting a new job. Hence, a single job can be given multiple job identifiers. Table B.5

gives a sample employment history of an individual who works at a job, spends an entire

wave out of work, and then returns to the same job. As in the previous example, the indi-

vidual spends four months not working; but because those four months happen to fall over

the entirety of a wave, the job is given a new identifier when the individual returns to work.

For such individuals, we could mistakenly label a recall to be a transition across separate

jobs.

We exploit an additional source of information recorded by the SIPP to identify potential

recalls. Every time that a distinct job identifier is associated with an individual, the survey

also adds a start date. This is indicated by the box around “start date” in the third row of

Table B.5. When we observe a start date that falls before the date that the SIPP purges

job identifiers, we have a good indication that the “new job” is in fact a recall.

To what extent do respondents report the date that they began the job, inclusive of

employment gaps, versus the date that they last began a contiguous employment spell?

We note that the survey question recording start dates is explicitly designed to identify the

start date to be the former of the two, as it is designed to distinguish jobs that began within

the wave from jobs that began before the wave.

For example, in the 1996 panel, respondents are asked “Did [FIRST AND LAST NAME]

begin [HIS HER] employment with [NAME OF EMPLOYER] at some time between [MONTH1]

1st and today?” (variable STRTJB). If individuals respond in the affirmative, they are asked

about the month and day within the wave that the job began (STRTREFP). Otherwise,

they are asked to give their “BEST estimate” of the year, month, and date that the job

began (variables STRTMONJB, STRTJYR, STRTJMTH).3

To identify potential recalls, we apply the following criterion: for individuals with an

incomplete employment record – e.g. respondents who have spent a complete wave in non-

employment – we consider any job with a start date prior to the period of non-employment

(the date at which the SIPP purges internal employment records) as a potential recall, and

we do not count the individual as a new hire.

We illustrate our criterion in Tables B.6 and B.7. In Table B.6, we observe an individual

work a wave at Job A, spend an entire wave in non-employment, and then start work at

3 See the 1996 Panel Wave 02 Questionnaire at http://www.census.gov/content/dam/Census/programs-
surveys/sipp/questionnaires/1996/SIPP%201996%20Panel%20Wave%2002%20-
%20Core%20Questionnaire.pdf
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Job B in wave 3. The start date of Job B is before the “gap date”, and hence, it is more

likely that Job B is the same as Job A. Hence, we do not consider the individual as a new

hire at Job B. In Table B.7, we similarly observe an individual work at Job A, spend a

wave in non-employment, and then work at Job B; however, the start date for job B in this

instance is after the gap date, and hence, we consider the worker to be a new hire in wave

3.

We apply the gap date criterion with two small additions: first, for a subset of job

dissolutions, workers report the cause of the dissolution. If the worker reports that he left

the pre-gap job to take another job, we do preclude the possibility that the post-gap job is

a recall to the first job. Second, if the start date at a post gap job is missing or statistically

imputed, we identify the job as a potential recall and do not count the worker as a new

hire.
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Table B.1: EE, EUE, & ENE

FD FE

(1) (2) (3) (4)

UR −0.424∗∗∗ −0.420∗∗∗ −0.144∗∗ −0.145∗∗

(0.0966) (0.0966) (0.0609) (0.0609)

UR · I(EE) −1.866∗∗∗ −1.666∗∗∗ −1.974∗∗∗ −1.933∗∗∗

(0.6794) (0.6218) (0.5027) (0.4724)

UR · I(EUE) −0.317 −0.479 −0.022 0.236
(0.7308) (0.7949) (0.5683) (0.6099)

UR · I(EOE) −0.950 −0.801 −1.348 −0.557
(1.6688) (2.0143) (1.0456) (1.2213)

I(EE) 0.045∗∗∗ 0.038∗∗∗ 0.004∗ 0.001
(0.0048) (0.0046) (0.0023) (0.0022)

I(EUE) −0.057∗∗∗ −0.075∗∗∗ −0.034∗∗∗ −0.039∗∗∗

(0.0071) (0.0081) (0.0032) (0.0037)

I(EOE) −0.010 −0.015 −0.020∗∗∗ −0.013∗

(0.0152) (0.0176) (0.0064) (0.0074)

P (πEEnu = πEUEnu ) 0.117 0.235 0.009 0.004

Unemp. spell for ENE 0+ 1+ 0+ 1+

No. observations 318,763 318,763 375,642 375,642

* p < 0.10, ** p < 0.05, *** p < 0.01

Dependent variable: log hourly real wage. Controls for education, union coverage, marital
status, a quadratic in tenure, and a linear time trend. Robust standard errors in parenthesis,
clustered by individual.

21



Table B.2: ENE by unemployment duration, controls for industry switchers, first differences

≤ 9 months ≤ 8 months ≤ 7 months ≤ 6 months ≤ 5 months

UR
−0.409∗∗∗ −0.408∗∗∗ −0.408∗∗∗ −0.407∗∗∗ −0.407∗∗∗ −0.406∗∗∗ −0.406∗∗∗ −0.405∗∗∗ −0.407∗∗∗ −0.407∗∗∗

(0.0966) (0.0966) (0.0966) (0.0966) (0.0966) (0.0966) (0.0966) (0.0966) (0.0966) (0.0966)

UR · I(EE)
−1.855∗∗∗ −2.225∗∗ −1.853∗∗∗ −2.224∗∗ −1.853∗∗∗ −2.223∗∗ −1.852∗∗∗ −2.222∗∗ −1.854∗∗∗ −2.223∗∗

(0.6795) (0.8802) (0.6796) (0.8801) (0.6796) (0.8801) (0.6796) (0.8801) (0.6796) (0.8801)

UR · I(ENE)
−0.460 0.238 −0.698 0.207 −0.896 0.445 −0.619 0.265 −0.673 0.758
(0.7499) (1.0419) (0.7546) (1.0494) (0.7085) (0.9709) (0.7380) (1.0250) (0.7595) (0.9825)

UR · I(LTU)
−1.438 0.449 −1.078 0.219 −0.600 −1.084 −0.970 0.049 −0.709 −0.977
(1.2929) (1.6967) (1.2556) (1.6946) (1.4762) (2.6394) (1.3015) (2.1089) (1.1779) (2.0159)

UR · I(EE & switcher) —
0.717

—
0.718

—
0.717

—
0.717

—
0.715

(1.3352) (1.3353) (1.3353) (1.3353) (1.3353)

UR · I(ENE & switcher)) —
−1.298

—
−1.640

—
−2.392∗

—
−1.616

—
−2.573∗

(1.4644) (1.4772) (1.3809) (1.4435) (1.4636)

UR · I(LTU) & switcher) —
−2.616

—
−1.807

—
0.535

—
−1.550

—
0.214

(2.3023) (2.2727) (3.1624) (2.6388) (2.4669)

Ind. controls No Yes No Yes No Yes No Yes No Yes

P (πEE
nu = πENE

nu ) 0.163 0.070 0.250 0.075 0.324 0.041 0.214 0.065 0.243 0.023
No. observations 375,642 375,641 375,642 375,641 375,642 375,641 375,642 375,641 375,642 375,641

* p < 0.10, ** p < 0.05, *** p < 0.01

Dependent variable: log hourly real wage. Controls for education, union coverage, marital status, a quadratic in tenure, and a linear time trend. Robust
standard errors in parenthesis, clustered by individual.
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Table B.3: ENE by unemployment duration, controls for industry switchers, fixed-effects

≤ 9 months ≤ 8 months ≤ 7 months ≤ 6 months ≤ 5 months

UR
−0.145∗∗ −0.145∗∗ −0.144∗∗ −0.145∗∗ −0.144∗∗ −0.144∗∗ −0.144∗∗ −0.144∗∗ −0.145∗∗ −0.144∗∗

(0.0609) (0.0609) (0.0609) (0.0609) (0.0609) (0.0609) (0.0609) (0.0609) (0.0609) (0.0609)

UR · I(EE)
−1.971∗∗∗ −2.859∗∗∗ −1.971∗∗∗ −2.859∗∗∗ −1.971∗∗∗ −2.859∗∗∗ −1.971∗∗∗ −2.859∗∗∗ −1.971∗∗∗ −2.859∗∗∗

(0.5027) (0.6025) (0.5027) (0.6025) (0.5027) (0.6025) (0.5027) (0.6025) (0.5027) (0.6025)

UR · I(ENE)
−0.246 1.215∗ −0.333 1.155 −0.387 1.200 −0.387 1.243 −0.173 1.449∗

(0.5816) (0.7285) (0.5882) (0.7344) (0.6040) (0.7446) (0.6245) (0.7643) (0.6485) (0.8089)

UR · I(LTU)
−0.162 −1.465 0.223 −0.904 0.377 −1.064 0.298 −0.820 −0.448 −0.860
(1.3940) (1.5197) (1.3146) (1.4355) (1.2084) (1.3312) (1.0684) (1.2764) (0.9661) (1.1045)

UR · I(EE & switcher) —
1.690∗∗

—
1.690∗∗

—
1.690∗∗

—
1.690∗∗

—
1.690∗∗

(0.7457) (0.7457) (0.7457) (0.7457) (0.7457)

UR · I(ENE & switcher) —
−3.030∗∗∗

—
−3.105∗∗∗

—
−3.367∗∗∗

—
−3.442∗∗∗

—
−3.381∗∗∗

(0.9856) (0.9996) (1.0139) (1.0431) (1.0858)

UR · I(LTU & switcher) —
1.776

—
1.487

—
1.933

—
1.527

—
0.505

(2.0951) (1.9504) (1.7847) (1.6874) (1.5259)

Ind. controls No Yes No Yes No Yes No Yes No Yes

P (πEE
nu = πENE

nu ) 0.022 0.000 0.031 0.000 0.040 0.000 0.045 0.000 0.026 0.000
No. observations 375,642 375,641 375,642 375,641 375,642 375,641 375,642 375,641 375,642 375,641

* p < 0.10, ** p < 0.05, *** p < 0.01

Dependent variable: log hourly real wage. Controls for education, union coverage, marital status, a quadratic in tenure, and a linear time trend. Robust
standard errors in parenthesis, clustered by individual.
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Table B.4: Two separate employment spells, one job, correct IDs. Job ID preserved across contiguous

employment spells because individual reports employment for each wave.

Wave
Time Recorded Recorded Employment Actual

Period Job ID Start Date within wave Job ID

1 01/96-04/96 A 09/95 M1-M4 A
2 05/96-08/96 A 09/95 M1 A
3 09/96-12/96 A 09/95 M2-M4 A

Table B.5: Two separate employment spells, one job, incorrect IDs. Job ID information is lost when

individual spends an entire wave without employment. At wave 3, the job is incorrectly coded as being a

new job and the start date is asked again.

Wave
Time Recorded Recorded Employment Actual

Period Job ID Start Date within wave Job ID

1 01/96-04/96 A 09/95 M1-M4 A
2 05/96-08/96 – – none –

3 09/96-12/96 B 09/95 M1-M4 A
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Table B.6: Two separate employment spells, “gap date” falls after reported job start date for job “B”.

Rule out wave 3 job as “new hire”.

Wave
Time Recorded Recorded Employment Actual Gap

Period Job ID Start Date within wave Job ID date

1 01/96-04/96 A 09/95 M1-M4 A –
2 05/96-08/96 – – none – 05/96

3 09/96-12/96 B 09/95 M1-M4 A 05/96

Table B.7: Two separate employment spells, “gap date” is prior to reported job start date for job “B”.

Count wave 3 job as “new hire”.

Wave
Time Recorded Recorded Employment Actual Gap

Period Job ID Start Date within wave Job ID date

1 01/96-04/96 A 09/95 M1-M4 A –
2 05/96-08/96 – – none – 05/96

3 09/96-12/96 B 08/96 M1-M4 A 05/96
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C Model appendix

In this appendix we first close the model by describing firms’ capital renting decision and

the households’ consumption/saving decision (which in turn determine labor productivity

and the discount factor), and we define the recursive equilibrium. We then proceed to derive

the log-linear equations that describe the first-order dynamics of the model. Most of the

derivations are standard or are similar to those in Gertler and Trigari (GT, 2009). We thus

focus on non-standard or new derivations. In the second section, we discuss first order-

approximations related to the three key decisions in the model: hiring, search intensity

and bargaining. In the third section, we derive log-linear expressions for the wage growth

of job changers and the shares of job-to-job flows. In the fourth section, we describe the

steady state of the labor market and in the fifth section we show how our calibration strategy

permits to pin down the key labor market parameters associated with the composition effect.

In the sixth section, we derive the loglinear expression for the measured user cost of labor

that we discuss in Section 6 of the main text. In the seventh section, we consider lateral job

match movements: We show that up to a first order the gains from lateral movements are

negligible, which justifies our ruling out this possibility in analyzing the worker’s decision

problem. In the last section, we tie up a final loose end and define the operator mapping

the distribution function from period t to period t+ 1.

C.1 Closing the model

C.1.1 Firms: capital renting and labor productivity

Firms produce output yt using capital and labor according to a Cobb-Douglas production

technology:

yt = ztk
ζ
t l

1−ζ
t , (26)

where kt is capital, lt labor in efficiency units and zt is total factor productivity. Capital is

perfectly mobile. Firms rent capital on a period by period basis. As described in the main

text, firms add labor through a search and matching process.

The firm’s decision problem is to choose capital kt and the hiring rate κt to maximize

the discounted stream of profits net recruiting costs, subject to the equations that govern

the laws of motion for labor in efficiency units lt and the quality mix of labor γt, and given

the expected paths of rental rates rt and wages wt. We express the value of each firm

Ft(lt, γt, wt) ≡ Ft as

Ft = max
kt,κt

{ztkζt l
1−ζ
t − κ

2
κ2
t lt − wtlt − rtkt + Et{Λt,t+1Ft+1}},
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subject to dynamic equations for lt and γt, and given the values of the firm level states

(lt, γt, wt) and the aggregate state vector.

Given constant returns and perfectly mobile capital, the firm’s value Ft is homogeneous

in lt. The net effect is that each firm’s choice of the capital/labor ratio and the hiring

rate is independent of its size. Let Jt be the firm value per efficiency unit of labor and let

ǩt ≡ kt/lt be its capital labor ratio. Then

Ft = Jt · lt, (27)

with Jt ≡ Jt(γt, wt) given by

Jt = max
ǩt,κt

{ztǩζt −
κ

2
κ2
t − wt − rtǩt + (ρt + κt)Et{Λt,t+1Jt+1}}, (28)

subject to the law of motion for γt.

The first order condition for capital renting is

rt = ζztǩ
ζ−1
t . (29)

Given Cobb-Douglas production technology and perfect mobility of capital, ǩt does not vary

across firms.

Substituting yields the expression for Jt that appears in the main text, given by

Jt = max
κt

{at −
κ

2
κ2
t − wt + (ρt + κt)Et{Λt,t+1Jt+1}}, (30)

where at denotes the current marginal product of labor (i.e., at = (1− ζ) /lt), which is

independent of the firm.

C.1.2 Households: consumption and saving

We adopt the representative family construct, following Merz (1995) and Andolfatto (1996),

allowing for perfect consumption insurance. There is a measure of families on the unit

interval, each with a measure one of workers. Before making allocating resources to per-

capita consumption and savings, the family pools all wage and unemployment income.

Additionally, the family owns diversified stakes in firms that pay out profits. The household

can then assign consumption c̄t to members and save in the form of capital kt, which is

rented to firms at rate rt and depreciates at the rate δ.

Let Ωt be the value of the representative household. Then,

Ωt = max
c̄t,k̄t+1

{log(c̄t) + βEtΩt+1} (31)
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subject to

c̄t + kt+1 +
ς0

1 + ης

{
νς

1+ης
n n̄t + νς̄

1+ης
bt b̄t

}
= w̄tn̄t + φw̄tb̄t + (1− n̄t − b̄t)uB + (1− δ + rt)kt + Tt + Πt, (32)

and

n̄t+1 = ρ̄nt n̄t + ξpts̄t (33)

b̄t+1 = ρ̄bt b̄t + ξγ̄mt pts̄t (34)

where Πt are the profits from the household’s ownership holdings in firms and Tt are lump

sum transfers from the government.4

The first-order condition from the household’s savings problem gives

1 = (1− δ + rt)Et{Λt,t+1} (35)

where Λt,t+1 ≡ βc̄t/c̄t+1.

C.1.3 Resource constraint, government policy, and equilibrium

The resource constraint states that the total resource allocation towards consumption, in-

vestment, vacancy posting costs, and search costs is equal to aggregate output:

ȳt = c̄t + k̄t+1 − (1− δ)kt (36)

+
κ

2

∫
i
κ2
t ltdi+

ς0

1 + ης

(
νς

1+ης
n n̄t + νς̄

1+ης
bt b̄t

)
(37)

The government funds unemployment benefits through lump-sum transfers:

Tt +
(
1− n̄t − b̄t

)
uB = 0. (38)

A recursive equilibrium is a solution for (i) a set of functions {Jt, V n
t , V b

t , Ut}; (ii) the

contract wage w∗t ; (iii) the hiring rate κt; (iv) the subsequent period’s wage rate wt+1; (v)

4 Chodorow-Reich and Karabarbounis (2016) show the introduction of utility from leisure can greatly
increase the difficulty of generating sufficient unemployment volatility when the model is calibrated to match
the estimated cyclicality of the opportunity cost of employment. For simplicity we do not include utility
from leisure, but in ongoing work we show that our model with staggered wage contracting is robust to this
critique. Further, we model the cost of search as pecuniary rather than utility. Having a utility cost of
search may dampen the procyclicality of search intensity because recessions are times when workers value
additional consumption relative to leisure. We leave the quantitative exploration of this mechanism for
future research.
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the search intensity of a worker in a bad match ςbt;(vi) the rental rate on capital rt; (vii)

the average wage, the average contract wage, the average search intensity of workers in bad

matches and the average hiring rate, w̄t, w̄
∗
t , ς̄bt and κ̄t; (viii) the capital labor ratio ǩt; (ix)

the average consumption and capital, c̄t and k̄t+1; (x) the average employment in good and

bad matches, n̄t and b̄t; (xi) the density function of composition and wages across workers

dGt (γ,w); and (xii) a transition function Qt,t+1. The solution is such that (i) w∗t satisfies

the Nash bargaining condition; (ii) κt satisfies the hiring condition; (iii) wt+1 is given by

the Calvo process for wages; (iv) ςbt satisfies the first-order condition for search intensity

of workers in bad matches; (v) rt satisfies the first-order condition for capital renting;

(vi) w̄t =
∫
w,γ wdGt (γ,w), w̄∗t =

∫
w,γ w

∗
t (γ) dGt (γ,w), ς̄bt =

∫
w,γ ςbt (γ,w) dGt (γ,w) and

κ̄t =
∫
w,γ κt (γ,w) dGt (γ,w); (vii) the rental market for capital clears, ǩt = k̄t/

(
n̄t + φb̄t

)
;

(viii) c̄t and k̄t+1 solve the household problem; (ix) n̄t and b̄t evolve according to (33) and

(34); (x) the evolution of Gt is consistent with Qt,t+1; (xi) Qt,t+1 is defined in section C.7

of the appendix.

C.2 Hiring, search intensity and staggered Nash bargaining

Relative to GT, where the only firm-specific state variable was wages, here we must also

keep track of composition. As might be expected, there is a non-trivial interplay between

composition and wages at the firm level. Composition is inherited from the previous period

and influences the wage through the Nash wage bargain; the wage influences next-period

composition through hiring and search intensity. We introduce the restriction that good

and bad matches have the same steady state job survival rates, which lends considerable

analytic and computational tractability to the analysis.

We first state a set of results that will simplify the derivation of the log-linear equations.

These include a set of steady state results and approximations of period-ahead firm and

worker surpluses at renegotiating firms. We establish how these properties are used to

show that the ”composition effect” in hiring – wherein firms vary the hiring rate to vary

next-period composition – is zero up to a first order. We also briefly discuss the absence

of a composition effect in search intensity. We then go over the relevant equations for

determining the Nash contract wage: the worker and firm surpluses and the Nash first

order condition. We then derive recursive log-linear expressions for the average firm and

worker surpluses making use of the surplus approximations previously stated. In doing

that, we also derive expressions for the average hiring rate, search intensity, and retention

rate at a renegotiating firm. Finally, we prove the steady-state results and the surplus

approximations that we invoke for deriving recursive log-linear expressions for the average

worker and firm surplus and for linearizing the composition term in hiring.
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C.2.1 Some useful results

Let z̃ denote the steady state of variable zt. Assume that ςn = ξς̃b, so that ρ̃n = ρ̃b = ρ̃

(i.e., retention rates of good and bad workers are the same in steady state). Then we obtain

the following steady state results:

∂γt+1

∂κt
|ss= 0 (39)

∂w∗t (γt)

∂γt
|ss= 0 (40)

∂Jt(γt, wt)

∂γt
|ss=

∂Ht(γt, wt)

∂γt
|ss=

∂Hb
t (γt, wt)

∂γt
|ss= 0 (41)

Let z̄t ≡
∫
zt (γ,w) dGt (γ,w) denote the time t average of a firm-specific variable

zt (γt, wt) and note that, up to a first order, z̄t = zt (γ̄t, w̄t). Let ẑt denote the log de-

viation of a variable zt from its steady state value z̃. The following approximations for the

period-ahead firms and worker surpluses hold:

Ĥt+1

(
γt+1, w

∗
t+1

(
γt+1

))
= Ĥt+1

(
γ̄t+1, w̄

∗
t+1

)
(42)

Ĥt+1

(
γt+1, w̄

∗
t

)
= Ĥt+1

(
γ̄t+1, w̄

∗
t+1

)
+ ηHw

(̂̄w∗t − ̂̄w∗t+1

)

Ĵt+1

(
γt+1, w

∗
t+1

(
γt+1

))
= Ĵt+1

(
γ̄t+1, w̄

∗
t+1

)
(43)

Ĵt+1

(
γt+1, w̄

∗
t

)
= Ĵt+1

(
γ̄t+1, w̄

∗
t+1

)
+ ηJw

(̂̄w∗t − ̂̄w∗t+1

)

Ĥb
t+1

(
γt+1, w

∗
t+1

(
γt+1

))
= Ĥb

t+1

(
γ̄t+1, w̄

∗
t+1

)
(44)

Ĥb
t+1

(
γt+1, w̄

∗
t

)
= Ĥb

t+1

(
γ̄t+1, w̄

∗
t+1

)
+ ηHbw

(̂̄w∗t − ̂̄w∗t+1

)
where ηHw, ηJw, and ηHbw are the steady state elasticities of the worker surplus in good

matches, H, the firm surplus, J , and the worker surplus in bad matches, Hb, with respect

to the wage.

We use results (39)-(44) to prove that the “composition effect” of hiring is zero up to

a first order and to solve for the average contract wage up to a first order, which in turn

requires deriving recursive loglinear equations of the firm and worker surpluses. We will

invoke these results in the following subsections and then prove them at the end of the

section.
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C.2.2 Hiring

In the main text, we derive the first order condition for hiring, κt. Given that next pe-

riod wage equals this period wage wt with probability λ and next period contract wage

w∗t+1

(
γt+1

)
with probability 1 − λ, we can write the hiring condition at a firm with com-

position γt and wage wt as follows:

κκt (γt, wt) = Et{Λt,t+1

[
λJt+1

(
γt+1, wt

)
+ (1− λ) Jt+1

(
γt+1, w

∗
t+1

(
γt+1

))]
}+ ωt (γt, wt)

where the second term represents a composition term in hiring:

ωt (γt, wt) = [ρt (γt) + κt (γt, wt)]×

Et

{
Λt,t+1

[
λ
∂Jt+1(γt+1, wt)

∂γt+1

+ (1− λ)
∂Jt+1(γt+1, w

∗
t+1

(
γt+1

)
)

∂γt+1

+(1− λ)
∂Jt+1(γt+1, w

∗
t+1

(
γt+1

)
)

∂w∗t+1

(
γt+1

) ∂w∗t+1

(
γt+1

)
∂γt+1

]
∂γt+1

∂κt

}

The firm cares about period-ahead composition for the implied period-ahead retention rate

of a unit of labor quality (represented by the first two terms in square brackets) and through

possible effects of period-ahead firm composition on future renegotiated wages (the third

term).

Since we will prove that ∂J/∂γ, ∂w∗ (γ) /∂γ, ∂γ′/∂κ are all equal to 0 in the steady

state, it follows that up to a first order the composition term ωt (γt, wt) = 0.

C.2.3 Search intensity

In the main text, we also derive the first order condition for search intensity, ςbt. Similarly

to hiring, we can write the search intensity condition at a firm with composition γt and

wage wt as

ς0ς
ης
bt (γt, wt) = pnt Et

{
Λt,t+1

[
H̄t+1 − λHb

t+1(γt+1, wt)− (1− λ)Hb
t+1(γt+1, w

∗
t+1

(
γt+1

)
)
]}

One difference with respect to the hiring condition is that no composition term in search

intensity is present. A worker deciding on her own search intensity does not internalize the

effect her choice has on the average search intensity of workers employed in bad matches

and thus on period-ahead firm composition. This happens because the firm employs a

continuum of workers and each worker behaves atomistically.
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C.2.4 Staggered Nash bargaining

Consider the problem of a firm and its workers employed in good matches renegotiating a

new contract wage, w∗t (γt) . For any composition γt, we can write the surplus of workers

in good matches Ht (γt, w
∗
t (γt)) as

Ht (γt, w
∗
t (γt)) = w∗t (γt)− uB − νc(ςn) + Et

{
Λt,t+1

[
νςnptH̄

a
t+1 − ptH̄a

t+1

]}
+ν (1− ςnpt)Et

{
Λt,t+1

[
λHt+1

(
γt+1, w

∗
t (γt)

)
+ (1− λ)Ht+1

(
γt+1, w

∗
t+1

(
γt+1

))]}
with

H̄a
t ≡ ξH̄t + (1− ξ) H̄b

t

H̄t ≡ V̄ n
t − Ut

H̄b
t ≡ V̄ b

t − Ut

Similarly, we can write firm surplus Jt (γt, w
∗
t (γt)) as

Jt(γt, w
∗
t (γt)) = at − w∗t (γt)−

κ

2
κt (γt, w

∗
t (γt))

2

+ [ρt (γt) + κt (γt, w
∗
t (γt))]×

Et
{

Λt,t+1

[
λJt+1

(
γt+1, w

∗
t (γt)

)
+ (1− λ) Jt+1

(
γt+1, w

∗
t+1

(
γt+1

))]}
with

κκt (γt, w
∗
t (γt)) = Et

{
Λt,t+1

[
λJt+1

(
γt+1, w

∗
t (γt)

)
+ (1− λ) Jt+1

(
γt+1, w

∗
t+1

(
γt+1

))]}
+ωt (γt, w

∗
t (γt))

and

at ≡ (1− ζ) ztǩ
α
t

In the main text, we write the Nash bargaining condition:

χt(γt, w
∗
t (γt))Jt(γt, w

∗
t (γt)) = (1− χt(γt, w∗t (γt)))Ht(γt, w

∗
t (γt)

where

χt(γt, w
∗
t (γt)) =

η

η + (1− η)µt(γt, w
∗
t (γt))/εt(γt, w

∗
t (γt))

with

εt(γt, w
∗
t (γt)) =

∂Ht (γt, w
∗
t (γt))

∂w∗t (γt)
and µt(γt, w

∗
t (γt)) =

∂Jt(γt, w
∗
t (γt))

∂w∗t (γt)
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As we discuss in the text, the Nash condition is a variation of the conventional sharing

rule, where the relative weight χ depends not only on the worker’s bargaining power η, but

also on the differential firm/worker horizon, reflected by the term µ/ε. While the horizon

effect is interesting from a theoretical perspective, GT shows that it is not quantitatively

important. Since this greatly enhances model tractability, in the quantitative analysis we

abstract from the horizon effect by having the relative weight χ fixed at η, thus effectively

working with the following simplified sharing rule:

ηJt (γt, w
∗
t (γt)) = (1− η)Ht (γt, w

∗
t (γt))

To solve for the average contract wage, w̄∗t , we now derive loglinear recursive expressions

for both the average surplus of workers in good matches, Ht (γ̄t, w̄
∗
t ), and the average firm

surplus, Jt (γ̄t, w̄
∗
t ), at a renegotiating firm. As it will become clear, we will also need ex-

pressions for renegotiating firms of the average hiring rate, κt (γ̄t, w̄
∗
t ), the average retention

rate, ρt (γ̄t, w̄
∗
t ), the average search intensity, ςbt (γ̄t, w̄

∗
t ), and the average worker surplus in

bad matches, Hb
t (γ̄t, w̄

∗
t ).

C.2.4.1 Average surplus of workers in good matches at a renegotiating firm

We start deriving a loglinear recursive expression for the average surplus of workers in good

matches at a renegotiating firm.

The nonlinear expression for Ht (γ̄t, w̄
∗
t ) is given by

Ht (γ̄t, w̄
∗
t ) = w∗t (γ̄t)− uB − νc(ςn) + Et

{
Λt,t+1

[
νςnptH̄

a
t+1 − ptH̄a

t+1

]}
+ν (1− ςnpt)λEt

{
Λt,t+1Ht+1

(
γt+1, w̄

∗
t

)}
+ν (1− ςnpt) (1− λ)Et

{
Λt,t+1Ht+1

(
γt+1, w

∗
t+1

(
γt+1

))}
where γt+1 denotes next period composition at the firm and w∗t+1

(
γt+1

)
next period contract

wage in case of renegotiation.

Loglinearizing and rearranging, we obtain:

Ĥt (γ̄t, w̄
∗
t ) =

(
w̃/H̃

) ̂̄w∗t + (ν − ρ̃)β
(
H̃a/H̃

)
Et

{
Λ̂t,t+1 + ̂̄Ha

t+1

}
−p̃β

(
H̃a/H̃

)
Et

{
p̂t + Λ̂t,t+1 + ̂̄Ha

t+1

}
− (ν − ρ̃)β

(
1−

(
H̃a/H̃

))
p̂t

+ρ̃βEt

{
Λ̂t,t+1 + λĤt+1

(
γt+1, w̄

∗
t

)
+ (1− λ) Ĥt+1

(
γt+1, w

∗
t+1

(
γt+1

))}
Using now the approximation in equation (42) to substitute out terms in the last line
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and rearranging, we obtain a recursive loglinear expression for Ht (γ̄t, w̄
∗
t ), as follows:

Ĥt (γ̄t, w̄
∗
t ) =

(
w̃/H̃

) [̂̄w∗t + ρ̃λβε̃Et
{̂̄w∗t − ̂̄w∗t+1

}]
+(ν − ρ̃)β

(
H̃a/H̃

)
Et

{
Λ̂t,t+1 + ̂̄Ha

t+1

}
−p̃β

(
H̃a/H̃

)
Et

{
p̂t + Λ̂t,t+1 + ̂̄Ha

t+1

}
−(ν − ρ̃)β

(
1−

(
H̃a/H̃

))
p̂t

+ρ̃βEt

{
Λ̂t,t+1 + Ĥt+1

(
γ̄t+1, w̄

∗
t+1

)}
where ε̃ ≡ ∂H/∂w.

C.2.4.2 Average surplus of firms at a renegotiating firm Here we derive a log-

linear recursive expression for the average firm surplus at renegotiating firms.

The nonlinear expression for Jt (γ̄t, w̄
∗
t ) is given by

Jt (γ̄t, w̄
∗
t ) = at − w̄∗t +

κ

2
κt (γ̄t, w̄

∗
t )

2

+ρt (γ̄t, w̄
∗
t )λEt

{
Λt,t+1Jt+1

(
γt+1, w̄

∗
t

)}
+ρt (γ̄t, w̄

∗
t ) (1− λ)Et

{
Λt,t+1Jt+1

(
γt+1, w

∗
t+1

(
γt+1

))}
where, as for Ht (γ̄t, w̄

∗
t ), γt+1 denotes next period composition and w∗t+1

(
γt+1

)
next period

contract wage, and where we have dropped the term ωt (γ̄t, w̄
∗
t ) that is zero up to a first

order.

Loglinearizing and rearranging, we obtain:

Ĵt (γ̄t, w̄
∗
t ) =

(
ã/J̃

)
ât −

(
w̃/J̃

) ̂̄w∗t + (1− ρ̃)βκ̂t (γ̄t, w̄
∗
t )

+ρ̃βλEt

{
ρ̂t (γ̄t, w̄

∗
t ) + Λ̂t,t+1 + Ĵt+1

(
γt+1, w̄

∗
t

)}
+ρ̃β (1− λ)Et

{
ρ̂t (γ̄t, w̄

∗
t ) + Λ̂t,t+1 + Ĵt+1

(
γt+1, w

∗
t+1

(
γt+1

))}
Using now the approximation in equation (43) to substitute out terms in the last two

lines and rearranging, we obtain a recursive loglinear expression for Jt (γ̄t, w̄
∗
t ), as follows:

Ĵt (γ̄t, w̄
∗
t ) =

(
ã/J̃

)
ât −

(
w̃/J̃

)
Et
{̂̄w∗t + ρ̃λβµ̃

(̂̄w∗t − ̂̄w∗t+1

)}
+ (1− ρ̃)βκ̂t (γ̄t, w̄

∗
t )

+ρ̃βEt

{
ρ̂t (γ̄t, w̄

∗
t ) + Λ̂t,t+1 + Ĵt

(
γ̄t+1, w̄

∗
t+1

)}
where µ̃ ≡ ∂J/∂w.

We note that Ĵt (γ̄t, w̄
∗
t ) depends on κ̂t (γ̄t, w̄

∗
t ) and ρ̂t (γ̄t, w̄

∗
t ). The latter, in turn,
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depends on ς̂bt (γ̄t, w̄
∗
t ) since

ρ̂t (γ̄t, w̄
∗
t ) = −ν − ρ̃

ρ̃
(p̂t + ς̂bt (γ̄t, w̄

∗
t ))

We thus proceed to derive loglinear expressions for κt (γ̄t, w̄
∗
t ) and ςbt (γ̄t, w̄

∗
t ).

C.2.4.3 Average hiring rate at a renegotiating firm The nonlinear expression for

κt (γ̄t, w̄
∗
t ) is given by

κκt (γ̄t, w̄
∗
t ) = Et{Λt,t+1

[
λJt+1

(
γt+1, w̄

∗
t

)
+ (1− λ) Jt+1

(
γt+1, w

∗
t+1

(
γt+1

))]
}

where, as before, we have dropped the term ωt (γ̄t, w̄
∗
t ) that is zero up to a first order.

Loglinearizing and rearranging, we obtain:

κ̂t (γ̄t, w̄
∗
t ) = Et

{
Λ̂t,t+1 + λĴt+1

(
γt+1, w̄

∗
t

)
+ (1− λ) Ĵt+1

(
γt+1, w

∗
t+1

(
γt+1

))}
Using again the approximation in equation (43), we obtain

κ̂t (γ̄t, w̄
∗
t ) = −

(
w̃/J̃

)
λµ̃
(̂̄w∗t − ̂̄w∗t+1

)
+ Et

{
Λ̂t,t+1 + Ĵt

(
γ̄t+1, w̄

∗
t+1

)}
C.2.4.4 Average search intensity at a renegotiating firm The nonlinear expres-

sion for ςbt (γ̄t, w̄
∗
t ) is given by

ς0ς
ης
bt (γ̄t, w̄

∗
t ) = pnt Et

{
Λt,t+1H̄t+1

}
−pnt λEt

{
Λt,t+1H

b
t+1(γt+1, w̄

∗
t )
}

−pnt (1− λ)Et

{
Λt,t+1H

b
t+1(γt+1, w

∗
t+1

(
γt+1

)
)
}

and the loglinear version is given by

ης ς̂bt(γ̄t, w̄
∗
t ) = Et

{
p̂t + Λ̂t,t+1 +

(
H̃/
(
H̃ − H̃b

)) ̂̄Ht+1

}
−
(
H̃b/

(
H̃ − H̃b

))
Et

{
λĤb

t+1(γt+1, w̄
∗
t ) + (1− λ) Ĥb

t+1(γt+1, w
∗
t+1

(
γt+1

)
)
}

Using now the approximation in equation (44), we obtain

ης ς̂bt (γ̄t, w̄
∗
t ) = −λ

(
w̃/
(
H̃ − H̃b

))
ε̃bEt

{̂̄w∗t − ̂̄w∗t+1

}
+Et

{
p̂t + Λ̂t,t+1 +

(
1/
(
H̃ − H̃b

))(
H̃ ̂̄Ht+1 − H̃bĤb

t

(
γ̄t+1, w̄

∗
t+1

))}
where ε̃b ≡ ∂Hb/∂w.
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Since ς̂bt (γ̄t, w̄
∗
t ) depends on Ĥb

t

(
γ̄t+1, w̄

∗
t+1

)
, we finally derive a recursive loglinear ex-

pression for Hb
t

(
γ̄t+1, w̄

∗
t+1

)
.

C.2.4.5 Average surplus of workers in bad matches at a renegotiating firm

The nonlinear expression for Hb
t (γ̄t, w̄

∗
t ) is given by

Hb
t (γ̄t, w̄

∗
t ) = φw∗t (γ̄t)− uB − νc(ςbt (γ̄t, w̄

∗
t ))

+Et
{

Λt,t+1

[
νςbt (γ̄t, w̄

∗
t ) p

n
t H̄t+1 − ptH̄a

t+1

]}
+ν (1− ςbt (γ̄t, w̄

∗
t ) p

n
t )λEt

{
Λt,t+1H

b
t+1

(
γt+1, w̄

∗
t

)}
+ν (1− ςbt (γ̄t, w̄

∗
t ) p

n
t ) (1− λ)Et

{
Λt,t+1H

b
t+1

(
γt+1, w

∗
t+1

(
γt+1

))}
Loglinearizing and rearranging, we obtain:

Ĥb
t (γ̄t, w̄

∗
t ) =

(
w̃/H̃

)
φ ̂̄w∗t − (νς0ς̃

1+ης
b /H̃b

)
ς̂bt (γ̄t, w̄

∗
t )

+(ν − ρ̃)β
(
H̃/H̃b

)
Et

{
Λ̂t,t+1 + ̂̄Ht+1

}
−p̃β

(
H̃a/H̃b

)
Et

{
p̂t + Λ̂t,t+1 + ̂̄Ha

t+1

}
−(ν − ρ̃)β

(
1−

(
H̃a/H̃b

))
(p̂t + ς̂bt (γ̄t, w̄

∗
t ))

+ρ̃βλEt

{
Λ̂t,t+1 + Ĥb

t+1

(
γt+1, w̄

∗
t

)}
+ρ̃β (1− λ)Et

{
Λ̂t,t+1 + Ĥb

t+1

(
γt+1, w

∗
t+1

(
γt+1

))}
Using again equation (44) and rearranging, we obtain a recursive loglinear expression

for Hb
t (γ̄t, w̄

∗
t ), as follows:

Ĥb
t (γ̄t, w̄

∗
t ) =

(
w̃/H̃

)
Et

{
φ ̂̄w∗t + ρ̃λβε̃b

(̂̄w∗t − ̂̄w∗t+1

)}
−
(
νς0ς̃

1+ης/H̃b
)
ς̂bt (γ̄t, w̄

∗
t )

+(ν − ρ̃)β
(
H̃/H̃b

)
Et

{
Λ̂t,t+1 + ̂̄Ht+1

}
−p̃β

(
H̃a/H̃b

)
Et

{
p̂t + Λ̂t,t+1 + ̂̄Ha

t+1

}
−(ν − ρ̃)β

(
1−

(
H̃a/H̃b

))
(p̂t + ς̂bt (γ̄t, w̄

∗
t ))

+ρ̃βEt

{
Λ̂t,t+1 + Ĥb

t

(
γ̄t+1, w̄

∗
t+1

)}
where ε̃ ≡ ∂H/∂w.
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C.2.5 Derivation of steady-state results

We now derive the steady-state results invoked at the beginning of the appendix. In partic-

ular, we show that ∂w∗t (γt) /∂γt equals zero in the steady state. In doing that, we also show

that ∂γt+1/∂κt, ∂Jt (γt, wt) /∂γt, ∂Ht (γt, wt) /∂γt, ∂H
b
t (γt, wt) /∂γt, ∂ςbt (γt, wt) /∂γt, and

∂ρt (γt, wt) /∂γt are all equal to zero in the steady state.

More precisely, we solve a system of steady-state equations in the partial derivatives of

several variables with respect to the two firm-level state variables: current composition and

current wage. We show that in the steady state the outcome of the current wage bargain is

independent of the firm’s current composition, as long as the relevant parties believe that

the same is true of the outcome of future wage bargains.5

In what follows, we first derive the relevant equations belonging to the system; evaluate

them at steady state; and finally show that the solution is such that ∂w∗t (γt) /∂γt |ss= 0.

C.2.5.1 Effect of composition on contract wage Consider a renegotiating firm with

composition γt and contract wage w∗t (γt). Define

zt (γt, w
∗
t (γt)) ≡ ηJt(γt, w∗t (γt))− (1− η)Ht(γt, w

∗
t (γt))

Since zt (γt, w
∗
t (γt)) = 0 by the surplus sharing condition, we have

∂w∗t (γt)

∂γt
= − ∂zt (γt, w

∗
t (γt)) /∂γt

∂zt (γt, w
∗
t (γt)) /∂w

∗
t (γt)

where
∂zt (γt, w

∗
t (γt))

∂γt
= η

∂Jt (γt, w
∗
t (γt))

∂γt
− (1− η)

∂Ht (γt, w
∗
t (γt))

∂γt

∂zt (γt, w
∗
t (γt))

∂w∗t (γt)
= η

∂Jt (γt, w
∗
t (γt))

∂w∗t (γt)
− (1− η)

∂Ht (γt, w
∗
t (γt))

∂w∗t (γt)

Evaluating at steady state:

∂w∗(γ)

∂γ
= − η∂J/∂γ − (1− η) ∂H/∂γ

η∂J/∂w − (1− η) ∂H/∂w
(S1)

which gives us the first equation of the system.

C.2.5.2 Effect of composition and wages on worker surplus in good matches

We then obtain expressions for ∂H/∂γ and ∂H/∂w. For any given composition γt and wage

5 While in principle there may be other self-fulfilling solutions in which firm’s composition matters to
current wages in the steady state simply because the parties believe it will matter in the future, we believe
that our fundamentals-based solution is most natural, given the environment.
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wt, the worker surplus in a good match is

Ht (γt, wt) = wt − uB − νc(ςn)

+Et
{

Λt,t+1

[
νςnptH̄

a
t+1 − ptH̄a

t+1

]}
+ν (1− ςnpt)Et

{
Λt,t+1

[
λHt+1

(
γt+1, wt

)
+ (1− λ)Ht+1

(
γt+1, w

∗
t+1

(
γt+1

))]}
We can write ∂Ht (γt, wt) /∂γt as follows

∂Ht (γt, wt)

∂γt
= ν (1− ςnpt)Et

{
Λt,t+1

[
λ
∂Ht+1

(
γt+1, wt

)
∂γt+1

+ (1− λ)
∂Ht+1

(
γt+1, w

∗
t+1

(
γt+1

))
∂γt+1

+ (1− λ)
∂Ht+1

(
γt+1, w

∗
t+1

(
γt+1

))
∂w∗t+1

(
γt+1

) ∂w∗t+1

(
γt+1

)
)

∂γt+1

]
×
dγt+1

dγt

}

Evaluating at steady state gives

∂H

∂γ

(
1− ρβ dγ

′

dγ

)
= ρβ (1− λ)

∂H

∂w

∂w∗(γ)

∂γ

dγ′

dγ
(S2)

We now turn to ∂H/∂w. We can write ∂Ht (γt, wt) /∂wt as follows

∂Ht (γt, wt)

∂wt
= 1 + ν (1− ςnpt)Et

{
Λt,t+1λ

∂Ht+1

(
γt+1, wt

)
∂wt

}

+ν (1− ςnpt)Et

{
Λt,t+1

[
λ
∂Ht+1

(
γt+1, wt

)
∂γt+1

+ (1− λ)
∂Ht+1

(
γt+1, w

∗
t+1

(
γt+1

))
∂γt+1

+ (1− λ)
∂Ht+1

(
γt+1, w

∗
t+1

(
γt+1

))
∂w∗t+1

(
γt+1

) ∂w∗t+1

(
γt+1

)
∂γt+1

]
×
dγt+1

dwt

}

Evaluating at steady state gives the third equation of the system:

∂H

∂w

(
1− ρβλ− ρβ (1− λ)

∂w∗ (γ)

∂γ

dγ′

dw

)
= 1 + ρβ

∂H

∂γ

dγ′

dw
(S3)
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C.2.5.3 Effect of composition and wages on firm surplus We now turn to ∂J/∂γ

and ∂J/∂w. For any given composition γt and wage wt, the firm surplus is given by

Jt(γt, wt) = at − wt −
κ

2
κt (γt, wt)

2

+ [ρt (γt, wt) + κt (γt, wt)]×

Et
{

Λt,t+1

[
λJt+1

(
γt+1, wt

)
+ (1− λ) Jt+1

(
γt+1, w

∗
t+1

(
γt+1

))]}
which gives ∂Jt (γt, wt) /∂γt as follows

∂Jt (γt, wt)

∂γt
=

dρt
dγt
× Et

{
Λt,t+1

[
λJt+1

(
γt+1, wt

)
+ (1− λ) Jt+1

(
γt+1, w

∗
t+1

(
γt+1

))]}
+ [ρt (γt, wt) + κt(γt, wt)]×

Et

{
Λt,t+1

[
λ
∂Jt+1

(
γt+1, wt

)
∂γt+1

+ (1− λ)
∂Jt+1

(
γt+1, w

∗
t+1

(
γt+1

))
∂γt+1

+ (1− λ)
∂Jt+1

(
γt+1, w

∗
t+1

(
γt+1

))
∂w∗t+1

(
γt+1

) ∂w∗t+1

(
γt+1

)
∂γt+1

]
×
dγt+1

dγt

}

where Jt (γt, wt) is maximized with respect to κt(γt, wt), so that in taking the derivative

with respect to γt, we can hold κt(γt, wt) fixed at its optimal value.

Evaluating at steady state gives

∂J

∂γ

(
1− βdγ

′

dγ

)
=
dρ

dγ
βJ + β (1− λ)

∂J

∂w

∂w∗(γ)

∂γ

dγ′

dγ
(S4)

We can then write ∂Jt (γt, wt) /∂wt as

∂Jt (γt, wt)

∂wt
= −1 + [ρt (γt, wt) + κt (γt, wt)]λEt

{
Λt,t+1

∂Jt+1

(
γt+1, wt

)
∂wt

}
+ϕt (γt, wt)
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ϕt (γt, wt) = [ρt (γt, wt) + κt (γt, wt)]Et

{
Λt,t+1

[
λ
∂Jt+1

(
γt+1, wt

)
∂γt+1

+ (1− λ)
∂Jt+1

(
γt+1, w

∗
t+1

)
∂γt+1

+ (1− λ)
∂Jt+1

(
γt+1, w

∗
t+1

)
∂w∗t+1

∂w∗t+1

∂γt+1

]
dγt+1

dwt

+
dρt
dwt

Et
{

Λt,t+1

[
λJt+1

(
γt+1, wt

)
+ (1− λ) Jt+1

(
γt+1, w

∗
t+1

(
γt+1

))]}
where we have used the envelope condition.

Evaluating at steady state gives

∂J

∂w

(
1− λβ − β (1− λ)

∂w∗ (γ)

∂γ

dγ′

dw

)
= −1 + β

∂J

∂γ

dγ′

dw
+
dρ

dw
βJ (S5)

C.2.5.4 Effect of composition and wages on the retention rate Here we derive

expressions for dρ/dγ and dρ/dw. For any given composition γt and wage wt, the average

retention rate is

ρt (γt, wt) =
ρnt + φγtρ

b
t (γt, wt)

1 + φγt

where

ρbt (γt, wt) = ν (1− ςbt (γt, wt) p
n
t )

The derivative of ρt with respect to γt is

dρt
dγt

=
∂ρt
∂γt

+
∂ρt
∂ρbt

∂ρbt
∂ςbt

∂ςbt
∂γt

and the derivative with respect to wt is

dρt
dwt

=
∂ρt
∂wt

+
∂ρt
∂ρbt

∂ρbt
∂ςbt

∂ςbt
∂wt

Let us consider each relevant term. We have

∂ρt
∂γt

=
φρbt (1 + φγt)− φ

(
ρnt + φγtρ

b
t

)
(1 + φγt)

2 =
φ
(
ρbt − ρnt

)
(1 + φγt)

2

∂ρt
∂ρbt

=
φγt

1 + φγt
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∂ρbt
∂ςbt

= −νpnt

∂ρt
∂wt

= 0

Evaluating terms at steady state, using ρ̃b = ρ̃n, and substituting, we obtain

dρ

dγ
= − φγ

1 + φγ
νpn

∂ςb
∂γ

(S6)

dρ

dw
= − φγ

1 + φγ
νpn

∂ςb
∂w

(S7)

C.2.5.5 Effect of composition and wage on future composition We turn to ex-

pressions for dγ′/dγ and dγ′/dw. Composition evolves as

γt+1 (γt, wt) =
ρbt (γt, wt) γt/ (1 + φγt) + κt (γt, wt) γ̄

h
t /
(
1 + φγ̄ht

)
ρnt / (1 + φγt) + κt (γt, wt) /

(
1 + φγ̄ht

)
where

ρbt (γt, wt) = ν (1− ςbt (γt, wt) p
n
t )

The derivative of γt+1 with respect to γt is

dγt+1

dγt
=
∂γt+1

∂γt
+
∂γt+1

∂κt
∂κt
∂γt

+
∂γt+1

∂ρbt

∂ρbt
∂ςbt

∂ςbt
∂γt

and the derivative with respect to wt is

dγt+1

dwt
=
∂γt+1

∂wt
+
∂γt+1

∂κt
∂κt
∂wt

+
∂γt+1

∂ρbt

∂ρbt
∂ςbt

∂ςbt
∂wt

Let us consider each relevant term at a time. We have

∂γt+1

∂γt
=

ρbt
(1+φγt)

2

[
ρnt / (1 + φγt) + κt/

(
1 + φγ̄ht

)]
+

ρnt φ

(1+φγt)
2

[
ρbtγt/ (1 + φγt) + κtγ̄ht /

(
1 + φγ̄ht

)]
[
ρnt / (1 + φγt) + κt/

(
1 + φγ̄ht

)]2
∂γt+1

∂κt
=

(1 + φγt)
(
1 + φγ̄ht

)[
ρnt
(
1 + φγ̄ht

)
+ κt (1 + φγt)

]2 (γ̄ht ρnt − γtρbt)
∂γt+1

∂ρbt
=

1

ρnt / (1 + φγt) + κt/
(
1 + φγ̄ht

) γt
1 + φγt

∂ρbt
∂ςbt

= −νpnt
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∂γt+1

∂wt
= 0

Evaluating terms at steady state, using ρ̃b = ρ̃n and γ̃ = γ̃h, we obtain

∂γ′

∂γ
= ρ

∂γ′

∂κ
= 0

∂γ′

∂ρb
= γ

∂ρb

∂ςb
= −νpn

Substituting, we obtain
dγ′

dγ
= ρ− γνpn∂ςb

∂γ
(S8)

dγ′

dw
= −γνpn∂ςb

∂w
(S9)

C.2.5.6 Effect of composition and wages on search intensity From the expres-

sions in the previous sub-section, we need ∂ςb/∂γ and ∂ςb/∂w. For any given composition

γt and wage wt, search intensity is given by

ς0ςbt (γt, wt)
ης = Et

{
Λt,t+1p

n
t

[
H̄t+1

−λHb
t+1

(
γt+1, wt

)
− (1− λ)Hb

t+1

(
γt+1, w

∗
t+1

(
γt+1

))]}
We can write ∂ςbt (γt, wt) /∂γt as follows

∂ςbt (γt, wt)

∂γt
= −

(
ς

1−ης
bt

ηςς0

)
Et

{
Λt,t+1p

n
t

[
λ
∂Hb

t+1

(
γt+1, wt

)
∂γt+1

+ (1− λ)
∂Hb

t+1

(
γt+1, w

∗
t+1

(
γt+1

))
∂γt+1

+ (1− λ)
∂Hb

t+1

(
γt+1, w

∗
t+1

(
γt+1

))
∂w∗t+1

(
γt+1

) ∂w∗t+1

(
γt+1

)
∂γt+1

]
dγt+1

dγt

}
Letting

τ ≡
ς

1−ης
b βpn

ηςς0

and evaluating at the steady state, we obtain

∂ςb
∂γ

= −τ
(
∂Hb

∂γ
+ (1− λ)

∂Hb

∂w

∂w∗ (γ)

∂γ

)
dγ′

dγ
(S10)
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We also have ∂ςbt (γt, wt) /∂wt as follows

∂ςbt
∂wt

= −

(
ς

1−ης
bt

ηςς0

)
Et

{
Λt,t+1p

n
t λ
∂Hb

t+1

(
γt+1, wt

)
∂wt

}

−

(
ς

1−ης
bt

ηςς0

)
Et

{
Λt,t+1p

n
t

[
λ
∂Hb

t+1

(
γt+1, wt

)
∂γt+1

+ (1− λ)
∂Hb

t+1

(
γt+1, w

∗
t+1

)
∂γt+1

+ (1− λ)
∂Hb

t+1

(
γt+1, w

∗
t+1

)
∂w∗t+1

∂w∗t+1

∂γt+1

]
×
dγt+1

dwt

}

Evaluating at steady state gives

∂ςb
∂w

= −τλ∂H
b

∂w
− τ

(
∂Hb

∂γ
+ (1− λ)

∂Hb

∂w

∂w∗ (γ)

∂γ

)
dγ′

dw
(S11)

C.2.5.7 Effect of composition and wages on worker surplus in bad matches

Finally, we derive expressions for ∂Hb/∂γ and ∂Hb/∂γ. For any given composition γt and

wage wt, the worker surplus in a bad match is

Hb
t (γt, wt) = φwt − uB − νc(ςbt)

+Et
{

Λt,t+1

[
νςbtp

n
t H̄t+1 − ptH̄a

t+1

]}
+ν (1− ςbtpnt )Et

{
Λt,t+1

[
λHb

t+1

(
γt+1, wt

)
+ (1− λ)Hb

t+1

(
γt+1, w

∗
t+1

(
γt+1

))]}
We can write ∂Hb

t (γt, wt) /∂γt as follows

∂Hb
t (γt, wt)

∂γt
= ν (1− ςbtpnt )Et

{
Λt,t+1

[
λ
∂Hb

t+1

(
γt+1, wt

)
∂γt+1

+ (1− λ)
∂Hb

t+1

(
γt+1, w

∗
t+1

(
γt+1

))
∂γt+1

+ (1− λ)
∂Hb

t+1

(
γt+1, w

∗
t+1

(
γt+1

))
∂w∗t+1

(
γt+1

) ∂w∗t+1

(
γt+1

)
∂γt+1

]
×
dγt+1

dγt

}

where Hb
t (γt, wt) is maximized with respect to ςbt(γt, wt), so that in taking the derivative

with respect to γt, we can hold ςbt(γt, wt) fixed at its optimal value.

Evaluating at steady state gives

∂Hb

∂γ

(
1− ρβ dγ

′

dγ

)
= ρβ (1− λ)

∂Hb

∂w

∂w∗ (γ)

∂γ

dγ′

dγ
(S12)
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We then have ∂Hb
t (γt, wt) /∂wt as

∂Hb
t (γt, wt)

∂wt
= φ+ ν (1− ςbtpnt )Et

{
Λt,t+1λ

∂Hb
t+1

(
γt+1, wt

)
∂wt

}

+ν (1− ςbtpnt )Et

{
Λt,t+1

[
λ
∂Hb

t+1

(
γt+1, wt

)
∂γt+1

+ (1− λ)
∂Hb

t+1

(
γt+1, w

∗
t+1

(
γt+1

))
∂γt+1

+ (1− λ)
∂Hb

t+1

(
γt+1, w

∗
t+1

(
γt+1

))
∂w∗t+1

(
γt+1

) ∂w∗t+1

(
γt+1

)
∂γt+1

]
×
dγt+1

dwt

}

where we have used the envelope condition.

Evaluating at steady state gives the last equation of the system

∂Hb

∂w

(
1− ρβλ− ρβ (1− λ)

∂w∗ (γ)

∂γ

dγ′

dw

)
= φ+ ρβ

∂Hb

∂γ

dγ′

dw
(S13)

C.2.5.8 System and solution We have a system of 13 equations, given by equations

(S1)-(S13), in 13 unknowns, given by{
∂w∗(γ)

∂γ
,
∂H

∂γ
,
∂H

∂w
,
∂J

∂γ
,
∂J

∂w
,
dρ

dγ
,
dρ

dw
,
dγ′

dγ
,
∂γ′

∂w
,
∂ςb
∂γ

,
∂ςb
∂w

,
∂Hb

∂γ
,
∂Hb

∂w

}
It is easy to see that ∂w∗(γ)/∂γ = 0 is a solution to the system. That is, in the steady

state, the outcome of the current wage bargain is independent of current composition, as

long as workers and firms believe that the same is true of the outcome of future wage
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bargains. The full solution to the system is as follows:

∂w∗(γ)

∂γ
=
∂H

∂γ
=
∂J

∂γ
=
dρ

dγ
=
∂ςb
∂γ

=
∂Hb

∂γ
= 0

∂H

∂w
=

1

1− ρβλ
∂J

∂w
−

1− ∂ρ
∂wβJ

1− λβ
dρ

dw
= − φγ

1 + φγ
νpn

∂ςb
∂w

dγ′

dγ
= ρ

dγ′

dw
= −γνpn∂ςb

∂w
∂ςb
∂w

= − τλφ

1− ρβλ
∂Hb

∂w
=

φ

1− ρβλ

C.2.6 Derivation of surplus approximations

We now prove the first-order approximations for the period-ahead surpluses at renegotiating

firms stated in equations (42), (43) and (44) in the first sub-section. To do that, we will

use the steady state results just proved.

Specifically, we derive the approximation in equation (42 ), given by

Ĥt+1

(
γt+1, w

∗
t+1

(
γt+1

))
= Ĥt+1

(
γ̄t+1, w̄

∗
t+1

)
Ĥt+1

(
γt+1, w̄

∗
t

)
= Ĥt+1

(
γ̄t+1, w̄

∗
t+1

)
+ ηHw

(̂̄w∗t − ̂̄w∗t+1

)
Similar derivations apply to equations (43) and (44).

Consider the worker surplus in good matches, H. It is a function of the two firm-specific

states, composition and wage, and the aggregate state. Note that the aggregate state not

appear explicitly as an argument of H as it is captured by our notation with the time index

on the function H.

Denoting the aggregate state at time t with st, we can then loglinearize the worker

surplus at time t for any wage, wt, and any composition, γt, as follows:

Ĥt (γt, wt) = ηHγ γ̂t + ηHwŵt + ηHsŝt (45)

where ηHγ , ηHw, and ηHs are the steady state elasticities of H with respect to composition,

wage and aggregate state.
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Using the approximation in (45), we can then write:

Ĥt+1

(
γt+1, w

∗
t+1

(
γt+1

))
= Ĥt+1

(
γ̄t+1, w̄

∗
t+1

)
+ ηHγ

(
γ̂t+1 − ̂̄γt+1

)
+ ηHw

(
ŵ∗t+1

(
γt+1

)
− ̂̄w∗t+1

)
Ĥt+1

(
γt+1, w̄

∗
t

)
= Ĥt+1

(
γ̄t+1, w̄

∗
t+1

)
+ ηHγ

(
γ̂t+1 − ̂̄γt+1

)
+ ηHw

(̂̄w∗t − ̂̄w∗t+1

)
(46)

where the terms in the aggregate state ŝt+1 cancel out.

We also have the following approximation:

ŵ∗t+1

(
γt+1

)
− ̂̄w∗t+1 = ηwγ

(
γ̂t+1 − ̂̄γt+1

)
(47)

where ηwγ is the steady state elasticity of the contract wage with respect to composition

and terms in the aggregate state ŝt+1 cancel out.

Substituting (47) in the first line of (46) we obtain:

Ĥt+1

(
γt+1, w

∗
t+1

(
γt+1

))
= Ĥt+1

(
γ̄t+1, w̄

∗
t+1

)
+ ηHγ

(
γ̂t+1 − ̂̄γt+1

)
+ ηHwηwγ

(
γ̂t+1 − ̂̄γt+1

)
Ĥt+1

(
γt+1, w̄

∗
t

)
= Ĥt+1

(
γ̄t+1, w̄

∗
t+1

)
+ ηHγ

(
γ̂t+1 − ̂̄γt+1

)
+ ηHw

(̂̄w∗t − ̂̄w∗t+1

)
(48)

The final step to derive equation (42) is to use ηHγ = ηwγ = 0, in turn resulting from

∂H/∂γ = ∂w∗/∂γ = 0 in the steady state, a result we have just proved. Substituting

ηHγ = ηwγ = 0 in ( 48), we finally obtain equation (42).

Equations (43) and (44) are obtained with similar steps, using in this case ηJγ = ηHbγ =

ηwγ = 0, in turn due to ∂J/∂γ = ∂Hb/∂γ = ∂w∗/∂γ = 0 in the steady state.

C.3 Wage growth of job changers

In this section, we derive expressions for the flow shares of the various types of job-to-job

flows; and we derive an expression for the average wage growth of job changers.

C.3.1 Job-to-job flows

The model includes two types of job-to-job movers: those who search with variable search

intensity from bad matches and those in good matches who are forced to search for non

economic reasons, i.e., who are subject to a reallocation shock. Since workers in bad matches

searching on the job only accept good matches, the first type of job changers leads only to

bad-to-good flows. The second type of job changers instead leads to both good-to-bad and
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good-to-good flows. We have the following job-to-job flows:

Bad to good : νς̄btξptb̄t

Good to bad : νςn (1− ξ) ptn̄t
Good to good : νςnξptn̄t

Summing over the flows we obtain total job flows as:

ν
(
ς̄btξb̄t + ςnn̄t

)
pt

The shares of flows over total flows then are defined as:

δBG,t =
ς̄btξγ̄t

ς̄btξγ̄t + ςn

δGB,t =
ςn (1− ξ)
ς̄btξγ̄t + ςn

δGG,t =
ςnξ

ς̄btξγ̄t + ςn

C.3.2 Average wage growth of job changers

Let ḡwt denote the average wage growth of continuing workers and ḡEEt the average wage

growth of workers making and employment-to-employment transition.

Up to a first order, ḡEEt can be written as:

ḡEEt = δBG,t−1 log

(
w̄t

φw̄t−1

)
+ δGB,t−1 log

(
φw̄t
w̄t−1

)
+ δGG,t−1 log

(
w̄t
w̄t−1

)
Simplifying, we obtain:

ḡEEt = ḡwt + ∆ᾱEEt

with

ḡwt = log

(
w̄t
w̄t−1

)
and

∆ᾱEEt = (− log φ) (δBG,t−1 − δGB,t−1)

Thus, average wage growth of new hires that are job changers equals average wage growth

of continuing workers plus a composition component measuring the change in match quality

among job changers. The composition component equals 0 if match quality is homogeneous

(φ = 1).
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Loglinearizing the average gross wage growth of job changers, we obtain:

ḡEEt = g̃EE +
1

1 + ∆α̃EE
ḡwt +

∆α̃EE

1 + ∆α̃EE
∆ᾱEEt

Loglinearizing the compositional effect, we obtain:

∆̂ᾱ
EE

t =
1

δ̃BG − δ̃GB

(
δ̃BGδ̂BG,t−1 − δ̃GB δ̂GB,t−1

)
with

δ̂BG,t =
1

1 + γ̃
̂̄γt +

(
1− δ̃BG

)̂̄ςbt
δ̂GB,t = − γ̃

1 + γ̃
̂̄γt − δ̃BĜ̄ςbt

Rearranging, we find the expression relating the composition effect to variable search inten-

sity of workers in bad matches and firm average composition:

∆̂ᾱ
EE

t =
δ̃BG + γ̃δ̃GB

(1 + γ̃)
(
δ̃BG − δ̃GB

)̂̄γt−1 +
1−

(
δ̃BG − δ̃GB

)
(
δ̃BG − δ̃GB

) δ̃BĜ̄ςbt−1

C.4 Steady state

Here we describe the steady state for the labor market, conditional on the steady-state

marginal product of labor, ã, which is determined as in the conventional neoclassical growth

model and is independent of the labor market equilibrium. The key labor market variables

are the hiring rate, κ̃, the search intensity of workers in bad matches, ς̃b, the wage, w̃,

employment in good and bad matches, ñ and b̃, the retention rates for good and bad

matches, ρ̃n and ρ̃b, the retention rate per unit of labor quality, ρ̃, the job-finding probability,

p̃, searchers, s̃, unemployment, ũ, composition, γ̃, and vacancies, ṽ. Further, relevant to

the composition effect described in the previous section, are the average wage growth of job

changers, g̃EE , the average flow share of bad-to-good transitions, δ̃BG, and the average flow

share of good-to-bad transitions, δ̃GB.

Equations (49)-(58) below determine κ̃, ς̃b, w̃, ñ, b̃, ρ̃n, ρ̃b, ρ̃, p̃, and s̃. First, there are

the three key behavioral relations: the hiring condition, the search intensity condition and

the condition for the wage bargain:

κκ̃ = βJ̃ (49)

ς0ς̃
ης
b = βp̃ξ

(
H̃ − H̃b

)
(50)

ηH̃ = (1− η) J̃ (51)
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where the firm and worker surpluses are given by

J̃ = ã− w̃ +
κ

2
κ̃2 + ρ̃βJ̃

H̃ = w̃ − uB − νς0
ς

1+ης
n

1 + ης
+ β

[
ρ̃nH̃ − p̃H̃a + (ν − ρ̃n) H̃a

]

H̃b = φw̃ − uB − νς0
ς̃

1+ης
b

1 + ης
+ β

[
ρ̃bH̃b − p̃H̃a +

(
ν − ρ̃b

)
H̃
]

with

H̃a = ξH̃ + (1− ξ) H̃b

Second, in the steady state, hiring equals separations for both good and bad matches:

p̃ξs̃ = (1− ρ̃n) ñ (52)

p̃ (1− ξ)
(
s̃− νς̃bb̃

)
=
(

1− ρ̃b
)
b̃ (53)

where the survival rates are given by

ρ̃n = ν (1− ςnp̃) (54)

ρ̃b = ν (1− ς̃bp̃ξ) (55)

and searchers are given by

s̃ =
(

1− ñ− b̃
)

+ νς̃bb̃+ νςnñ (56)

Third, since firms employ labor quality units by hiring workers in both good and bad

matches, in the steady state the hiring rate in units of labor quality equals the separation

rate per unit of labor quality:

κ̃ = 1− ρ̃ (57)

where

ρ̃ =
ρ̃nñ+ φρ̃bb̃

ñ+ φb̃
(58)

Unemployment, ũ, composition, γ̃, and vacancies, ṽ, are then pinned down by equations

(59)-(61), given by:

1 = ũ+ ñ+ b̃ (59)

γ̃ =
b̃

ñ
(60)
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p̃s̃ = σms̃
σṽ1−σ (61)

Finally, g̃EE , δ̃BG, and δ̃GB are determined by equations (62)-(64) as follows:

g̃EE = − log φ
(
δ̃BG − δ̃GB

)
(62)

δ̃BG =
γ̃ς̃bξ

γ̃ς̃bξ + ςn
(63)

δ̃GB =
ςn (1− ξ)
γ̃ς̃bξ + ςn

(64)

C.5 Calibration strategy

In this section we discuss how our calibration strategy leads to identification of the key

model parameters, in particular those driving the composition effect. The steady state for

the labor market described in the previous section includes 12 parameters: β, σm, σ, η, ν,

ςn, φ, ξ, uB, ς0, ης , κ. As we discuss in the main text, the first 4 parameters are either

normalized or calibrated using external sources. The remaining 8 parameters are calibrated

to target model-relevant moments: the steady state wage change of workers making a direct

job-to-job transition, g̃EE ; the steady state value of the share of bad-to-good flows out of

total job flows, δ̃BG , and its cyclicality, ηδBG,t,ut ; the steady state probabilities of making an

unemployment to employment transition, pUE , an employment to unemployment transition,

pEU , and an employment to employment transition, pEE ; and the relative value of non-work

to work, ūT . Finally, as we discussed in the main text, we impose a steady state restriction,

whereby retention rates in good and bad matches are equal in the steady state, ρ̃n = ρ̃b.

The calibration strategy leads to a unique solution for the steady state values and the

internally calibrated parameters. Here we show how the key parameter values relate to the

targets.

First, the separation rate into unemployment, 1− ν, is simply given by:

1− ν = pEU

Second, to explain how ξ is determined, we start by noting that, given the steady state

restriction, the average flow share of bad-to-good only depends on the relative number of

workers in bad and good matches, as follows:

δ̃BG =
γ̃

1 + γ̃

This pins down γ̃, given a target for δ̃BG. Combining then equations (52)-(56) and (58)-(60
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), we derive a relation between ξ, γ̃, and the targets, pEE and pEU , given by:

γ̃ =
(1− ξ)

(
pEE + pEU

)
pEE + ξpEU

This relation uniquely pins down ξ. The inverse productivity parameter, φ, is then computed

using the expression for the average wage growth of job changers:

g̃EE = − log φ
(
δ̃BG − δ̃GB

)
given the target for g̃EE , the target for δ̃BG and the average good-to-bad flow share δ̃GB,

in turn computed as:

δ̃GB =
1− ξ
1 + γ̃

The parameter ςn is pinned down, for given targets for the transition probabilities, by the

relation:

pEE =
(
1− pEU

)
pUEςn

where the probability that a worker in a good match makes an job-to-job transition, pEE ,

equals the probability of surviving within the match,
(
1− pEU

)
, times the job finding rate,

pUE , times the search intensity, ςn. The parameters uB, ς0 and κ are computed solving a

subset of the steady state system, equations (49)-(51), given a target for ūT and a value for

ης (and other computed parameters and steady state values). Finally, the key parameter ης ,

driving the elasticity of search intensity for workers in bad matches to the gain of making

a bad-to-good transition, is set to implement the target ηBG.

C.6 The measured user cost of labor

In this section, we derive the loglinear version of the measured user cost of labor, uclmt ,

introduced in Section 6, and given by:

uclmt = wmt,t + Et

{ ∞∑
s=1

(βρm)s
(
wmt,t+s − wmt+1,t+s

)}
, (65)

where wmt,t+s denotes the average measured wage of workers at t + s who still occupy the

job that they were hired into at time t and ρm the average measured retention rate, equal

in our model to ρ̃.

Let γht−1 denote the composition of new hires in t and γht−1,t+s the composition of workers

at t+s who still occupy the job they were hired into at time t.6 The latter can be expressed

6 Recall workers are hired at the end of the period and begin as new hires the subsequent period. Hence,
the ratio of bad-to-good matches among new hires at time t is given by γh

t−1.
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recursively as follows:

γht−1,t+s =


γht−1 if s = 0

γht−1,t+s

ρbt+s
ρnt+s

if s > 0
, (66)

where ρbt+s and ρnt+s are the retention rates at time t + s of workers employed in bad and

good matches.

Then, wmt,t+s can be written as:

wmt,t+s =
1 + φγht−1,t+s

1 + γht−1,t+s

wt+s, (67)

where wt+s is the contract wage at time t+ s.

Substituting (67) in (65), loglinearizing and simplifying yields:

ûcl
m

t = ŵt + ĉuclt , (68)

where the measure user cost, ûcl
m

t , is the sum of two terms: the true user cost of labor, ŵt,

and a compositional component, ĉuclt , in turn given by:

ĉuclt = −Ψ

(
γ̂ht−1 +

ρ̃β

1− ρ̃β

[(
ρ̂bt − ρ̂nt

)
+
(
γ̂ht − γ̂ht−1

)])
, (69)

with

Ψ =
(1− φ) γ̃h(

1 + γ̃h
) (

1 + φγ̃h
) . (70)

C.7 Lateral movements

A key maintained hypothesis in our analysis is that workers and firms can expect that

workers searching on-the-job will not want to voluntarily make lateral movements, that is,

to voluntarily move from a job of a given quality to another job of the same quality. As

we discuss shortly, this hypothesis simplifies how workers employed in bad matches form

expectations when choosing search intensity. At the same time, it also justifies our ruling

out in the model of variable search intensity by workers in good matches (since it eliminates

any motive for moving to improve the pecuniary gain).

Here we demonstrate that this condition holds to a reasonable approximation. Put

differently, under our parameterization, expected gains from making a lateral movement

are negligible. As a consequence, the introduction of a small moving cost would suffice to

rule them out. Intuitively, gains from moving to a same-quality job can only come from
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temporary dispersion in wages associated to infrequent bargaining. In particular, in presence

of a small moving cost, workers can expect to be willing to make a lateral movement only if

their wages are (i) substantially below the average and (ii) are not likely to be renegotiated

for sometime. However, the likelihood a worker is in this situation in our model is of trivial

quantitative importance, due to the transitory nature on average of wage differentials due

to staggered contracting.7

To start, consider a general framework where lateral movements are allowed for. Let

V s,i
t+1 be the value of on-the-job search at t+ 1, conditional on finding a job at t, for i = n, b.

For a worker employed in bad match, the expected value of on-the-job search, conditional

on a match, can be written as the sum of three terms:

Et

{
V s,b
t+1

}
= Et

{
V b
t+1

}
+ ξEt

{
V̄ n
t+1 − V b

t+1

}
+ (1− ξ)Lbt (71)

The first term is the expected value of continuing with the same job, Et
{
V b
t+1

}
; the second

term is the expected gain if the new match is good, in which case the worker makes a

bad-to-good move; the third term is the expected gain from moving to another bad match,

i.e., the expected gain from a lateral move, with Lbt to be defined shortly. The problem

faced by workers in bad matches optimally choosing search intensity that we formulate in

the main text corresponds to setting Lbt = 0. This greatly simplifies the solution to the

search intensity problem.

For a worker employed in a good match, the value of on-the-job search is the sum of

only two terms (since the worker will not voluntarily move to a bad match):

Et
{
V s,n
t+1

}
= Et

{
V n
t+1

}
+ ξLnt (72)

The first term is the expected value of continuing with the same job, Et
{
V n
t+1

}
; the second

term is the expected gain from moving to another good match, that is, the expected gain

from a lateral move. Clearly, with Lnt = 0, workers in good matches have no incentive to

search on-the-job as they cannot improve on their current status. Accordingly, we rule out

an optimal choice for variable search intensity for workers in good matches.

We now demonstrate that Lit = 0, for i = n, b, holds to a reasonable approximation.

Consider the lateral movement term, Lit, that is, the expected gain from making a lateral

movement, conditional on finding a job of the same quality, for i = n, b. This can be written

7Ranking firms by contract wage, our model implies a period 0.07 percent wage gain for workers making
a lateral movement from 10th to 90th percentile firm. This calculation does not account for the transitory
nature of wage gains from lateral movements, implying a far lower permanent wage improvement associated
with such a job transition relative to a transition with improvement in match quality. We discuss this in
more detail below.
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as

Lit = Et

{∫
γ,w

max
{
V i
t+1

(
γ′, w′

)
− V i

t+1, 0
}
dFt (γ,w)

}
(73)

where dFt (γ,w) ≡ κt(γ,w)
κ̄t

dGt (γ,w) and where the expression takes into account that a

worker will make a lateral move only if the value at the new match, V i
t+1 (γ′, w′), exceeds

the value at the current match, V i
t+1.

Through an involved series of derivations8, it can be shown that a first-order approxi-

mation of the lateral movement term around the steady state is given by

Lit = λ
∂Ṽ i

∂w̃

∫
w>w̃

(w − w̃) dFt (γ,w) (74)

where w̃ is the steady state wage and ∂Ṽ i/∂w̃ is the steady state gain from a higher wage.

Intuitively, up to a first order, Lit equals the average gain at time t of moving from a match

of a given quality to a match of the same quality but higher wage than the average, given

the distribution of wages (per unit of labor quality) at time t. The wage dispersion term,∫
w>w̃ (w − w̃) dFt (γ,w), is weighted by the likelihood next period that the wage at the new

match is not renegotiated, λ, and by the steady state lifetime utility gain, ∂Ṽ i/∂w̃.9

Using expression (74), we then compute the lateral movement term. The difficult object

to construct is a counterpart for dFt (γ,w). We proceed as follows. First, we simulate a

time series for the average contract wage from the model. Second, we pick an integer T

large enough so that the probability that a firm has not renegotiated its wage for T period is

approximately 0. We treat T as a truncation point, that is, we assume that the probability

at t that wt = w∗t−T−h for h > 0 is zero. Once the truncation point is determined, the

probability that a firm has a wage wt = w∗t−h is given by10

Pr
(
wt = w∗t−h

)
=

{
λh (1− λ) if h < T

λh if h = T
(75)

After computing the approximate wage distribution, we calculate Lit as follows

λ
∂Ṽ i

∂w̃

[
T∑
h=0

max
{
w∗t−h − w̃, 0

}
Pr
(
wt = w∗t−h

)]
(76)

8 The derivations are available upon request.
9 The utility gain ∂Ṽ i/∂w̃ equals φ/(1 − ρβλ) for i = b and 1/(1 − ρβλ) for i = n and accounts for the

expected duration of a match×contract.
10 We note that in constructing the relevant distribution, we ignore the fact that firm hiring rates will

vary in the cross section with wages. However, given that (i) hiring rates are decreasing in the wage and (ii)
the gain from a lateral movement is increasing in the wage at the new firm, we are constructing an upper
bound for the average gain from a lateral move.

54



We then take the average over time and express it as a percentage of the steady state

lifetime value V i. We obtain the following result: the expected percent gain from a lateral

movement is tiny. Precisely, it equals 0.032 percent for workers in bad matches and 0.040

percent for workers in good matches.

Importantly, wage dispersion generated by staggered bargaining is negligible not only in

absolute terms, but also relative to the dispersion generated by differences in match quality.

To see this, we compare the expected percent wage gain from an improvement in match

quality, given by (1 − φ)/φ, to the expected percent wage gain from a lateral movement,

given by (
1− βλ
1− ρβλ

)
λ

∫
w>w̃

(
w − w̃
w̃

)
dFt (γ,w) (77)

where the latter is corrected by an adjustment term, (1 − βλ)/ (1− ρβλ), capturing the

fact that while gains from lateral movements last over the employment duration as long

as the wage is not recontracted, gains from improved match quality last over the entire

employment duration. Taking averages over time, the first equals 0.2836, while the second

equals 0.0100.

Finally, we note that while we assume that workers searching on-the-job from bad

matches expect they will not want to make a lateral move, they will still run into other

matches of the same quality but with higher wages. We similarly rule out the possibil-

ity that they move to those new matches. To address this point, we compute measures

of the distribution of ex-post potential wage gains at time t. Given random search, the

probability that a worker with wage w = w∗t−h finds a firm with wage w′ = w∗t−j equals

Pr(w = w∗t−h) ·Pr(w′ = w∗t−j). We compute the 75th, 90th, 95th and 99th percentiles wage

gains from lateral moves at each t, expressed as a percent wage gain corrected as above by

the adjustment term, and take averages over time. We obtain the following numbers: the

75th percentile is 0.0051; the 90th percentile is 0.0110; the 95th percentile is 0.0145 and the

99th percentile is 0.0196. Compared to the gains from moving to a better quality match,

these are small numbers.

C.8 Transition function

We now define the law of motion for the distribution function, Gt. Let C and W be the

sets of possible compositions and wages. Define the Cartesian product of the worker/firm

state space to be S ≡ C ×W with σ-algebra Σ with typical subset S = (C × W). Define

the transition function Qs, s′ ((γ,w), C ×W) as the probability that an individual retained

or hired by a firm characterized by (γ,w) transits to the set C ×W next period when the

55



aggregate state transits from s to s′. Then Qs,s′ satisfies

Qt,t+1 ((γt, wt), C ×W)) = I(γt+1(γt, wt) ∈ C)

×
[
(1− λ)I

(
w∗t
(
γt+1(γt, wt)

)
∈ W

) κt(γt, wt) + ρt(γt, wt)

κ̄t + ρ̄t

+λI (wt ∈W )
κt(γt, wt) + ρt(γt, wt)

κ̄t + ρ̄t

]
where I(·) is the indicator function. Then,

Gt+1(C ×W) =

∫
(γt,wt)∈C×W

Qt,t+1

(
(γt, wt), C ×W)

)
dGt(γt, wt).

56


	An approximate data-generating model
	Bils (1985) regressions
	An approximate DGM with a cyclical composition effect
	Inference with a first-difference estimator
	Inference with a fixed-effects estimator
	Consistent estimator for 0=x"0120nuENE in fixed-effects
	Consistent estimator for 0=x"0120u in fixed-effects 
	Biased estimator for 0=x"0120nuEE in fixed-effects

	Robustness to staggered contracting
	Average match quality with constant wage premium and cyclical shares
	Robustness to alternative approximate DGMs

	Empirical appendix
	More on robustness of empirical results
	Non-employment versus unemployment
	More findings on cyclical selection from non-employment

	The Survey of Income and Program Participation
	Overview
	Variables and sample selection
	Identifying recalls


	Model appendix
	Closing the model
	Firms: capital renting and labor productivity
	Households: consumption and saving
	Resource constraint, government policy, and equilibrium

	Hiring, search intensity and staggered Nash bargaining
	Some useful results
	Hiring
	Search intensity
	Staggered Nash bargaining
	Derivation of steady-state results
	Derivation of surplus approximations

	Wage growth of job changers
	Job-to-job flows
	Average wage growth of job changers

	Steady state
	Calibration strategy
	The measured user cost of labor
	Lateral movements
	Transition function


