The Labor Demand and Labor Supply Channels of Monetary Policy

Sebastian Graves¹, Christopher Huckfeldt², and Eric Swanson³

¹University of Cambridge
 ²Federal Reserve Board
 ³UC Irvine & NBER

October 2, 2024

Conference on Global Monetary Policy and Inflation

The views expressed in this paper/presentation are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or any other person associated with the Federal Reserve System.

Labor supply response to monetary policy

- Conventional wisdom: monetary policy affects employment through labor demand
 - Little role (if any!) for labor supply
- Typical NK model abstracts from labor supply response to monetary policy
 - ► Sticky wages + neoclassical labor market clearing ⇒ labor is demand-determined
 - NK + search-and-matching ⇒ labor supplied inelastically
- ► This paper: new evidence from labor market flows consistent with substantial increase in labor supply to a contractionary monetary policy shock
 - ▶ Increase in search activity + decline in quits to non-employment
 - Decline in employment twice as large holding supply-driven flows fixed
- Study HA model with frictional labor markets + active labor supply margin:
 - ▶ Model accounts for large labor supply response to monetary policy shock. . .
 - But also matches micro estimates of MPC's and (modest) MPE's
- Interpretation: Labor supply important for monetary transmission mechanism

Data & Methodology

Labor Market Flows

- Time series data on labor market flows from CPS microdata
- ► Three states: employment (E), unemployment (U), nonparticipation (N)
- ▶ Interpret dynamics of labor market stocks through response of flows:

$$\begin{bmatrix} E \\ U \\ N \end{bmatrix}_{t+1} = \begin{bmatrix} 1 - p_{EU} - p_{EN} & p_{UE} & p_{NE} \\ p_{EU} & 1 - p_{UE} - p_{UN} & p_{NU} \\ p_{EN} & p_{UN} & 1 - p_{NE} - p_{NU} \end{bmatrix}_{t+1} \begin{bmatrix} E \\ U \\ N \end{bmatrix}_{t}$$

- ▶ Particular focus on response of supply-driven flows to monetary policy shock
 - Decision to search from non-employment, e.g. U-to-N and N-to-U
 - Quits to unemployment and nonparticipation (new!)

▶ Time Seri

► Cyclical Properties

New Evidence on Quits to Nonparticipation

Estimating the Effects of Monetary Policy

► Begin with reduced-form VAR:

$$Y_t = \alpha + B(L)Y_{t-1} + u_t \tag{1}$$

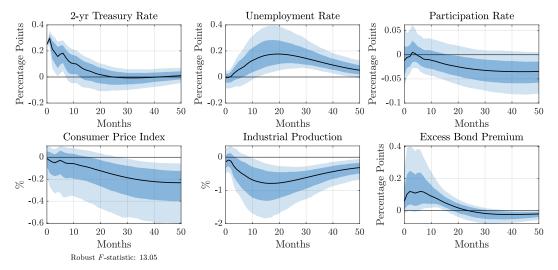
- Six monthly variables for baseline specification: two-year Treasury yield, unemployment rate, participation rate, log CPI, log IP, excess bond premium
- Assume structural shocks:

$$u_t = S\varepsilon_t \tag{2}$$

where the first structural shock is a "monetary policy shock", ε_t^{mp}

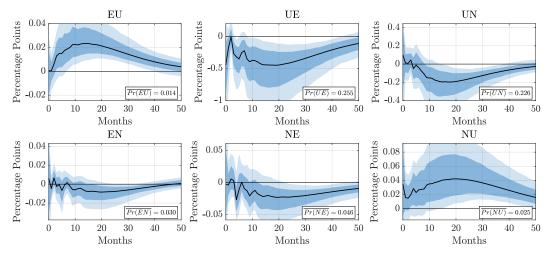
- First column of S, denoted s_1 , describes the impact effect of the structural monetary policy shock ε_t^{mp} on u_t and Y_t .
- ▶ Use an external instrument z_t to identify s_1

External Instrument

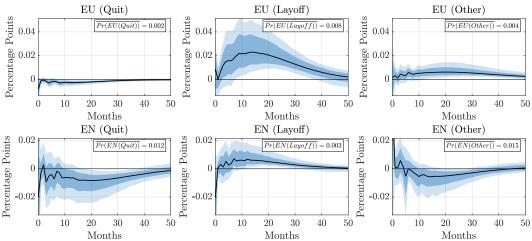

 \triangleright External instrument z_t needs to satisfy:

$$\mathbb{E}\left\{ \mathbf{z}_{t} \mathbf{\varepsilon}_{t}^{mp}
ight\}
eq 0$$
 (relevance)
$$\mathbb{E}\left\{ \mathbf{z}_{t} \mathbf{\varepsilon}_{t}^{-mp}
ight\} = 0$$
 (exogeneity)

- Use HFI changes in interest rate futures as external instrument in VAR
 - e.g., Stock and Watson (2012), Gertler & Karadi (2015)
- Implement methodology from Bauer & Swanson (2023)
 - ▶ Use interest rate changes around FOMC announcements and Fed Chair speeches
 - Orthogonalized with respect to recent macro/financial news
- ▶ Both speeches and orthogonalizing necessary for accurate estimates of flow IRFs
 - Avoids known issues of HFI estimation (e.g., Ramey 2016)
 - Additional noise from labor market flows requires more valid instrument
- Labor market flows added one-by-one to the main VAR



Baseline VAR


- Monthly data, 1978:M1–2019:M12
- Dark and light shaded regions report 68% and 90% confidence intervals

Response of Labor Market Flows

- ▶ pEU \uparrow & pUE \downarrow ⇒ Consistent with narrative of decline in labor demand
- ▶ pNU \uparrow , pUN \downarrow , & pEN \downarrow \Rightarrow Consistent with increase in labor supply

Response of EU & EN Flows: Quits vs Layoffs

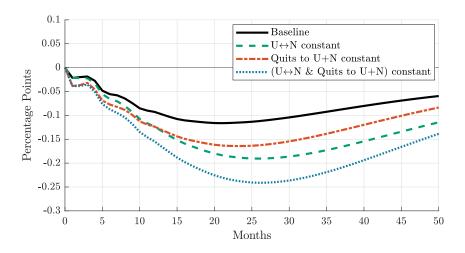
- ► Increase in layoffs explains rise in EU rate
- ▶ Decline in quits explains fall in EN rate

Additional Results

After contractionary monetary policy shock we also find:

- 1. Increase in "intensive margins" of search from non-employment •
- 2. Cyclical composition plays limited role in shaping response of aggregate flows •
- 3. Larger response of supply-driven flows among less-educated •
- 4. Decline in participation driven by labor force exit (through increase in unemployment); attenuated by increase in labor force entry
- 5. Significant decline in vacancies •
- 6. Nominal wages decline slowly
- 7. No response of job-to-job transitions •
- 8. Use of Chair speeches and orthogonalized shocks necessary for our estimates •

Using Flows to Account for Dynamics of Labor Market Stocks


Flow-Based Accounting for Dynamics of Stocks

- ► Take IRF's as given, use transition probabilities to construct hypothetical stocks
- ► Law of motion for stocks in terms of transition probabilities (i.e., flows)

$$\begin{bmatrix} E_{t+k} \\ U_{t+k} \\ N_{t+k} \end{bmatrix} = \Big(\prod_{j=1}^k P_{t+j}\Big) \begin{bmatrix} E_t \\ U_t \\ N_t \end{bmatrix}$$

- Assess contribution of flow p_{XY} to stock Z by replacing $\{p_{XY}\}_t$ with steady-state value, \tilde{p}_{XY}
- ightharpoonup Study behavior of resulting hypothetical stock \check{Z} to isolate role of flow ho_{XY}
- Assess role of supply-driven flows in shaping impulse response of employment

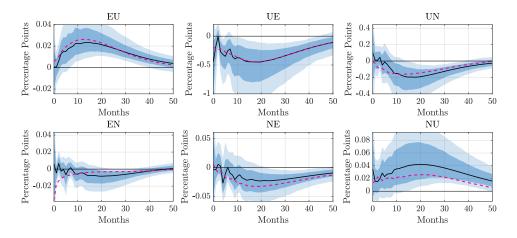
Decomposing Employment Response to a Monetary Policy Shock

► Holding supply-driven flows fixed ⇒ Employment falls twice as much

Model

Model

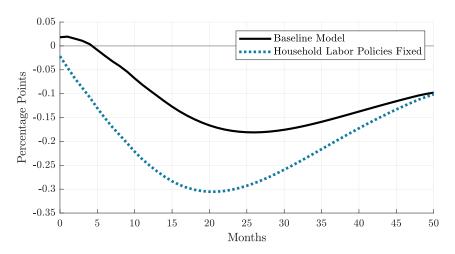
- ► What do IRFs of supply-driven labor flows say about household labor supply response to a monetary policy shock?
- ➤ To answer, we study heterogeneous agent model with labor market frictions and endogenous participation à la Krusell et al (2017)
 - ► Households face employment risk (job-finding/layoff) + shocks to labor productivity
 - Choose consumption/savings and labor supply (quit, search, accept)
- Estimate key model parameters to match response of labor market flows to contractionary monetary policy shock
 - ▶ Study by feeding responses for layoff rate, job-finding rate, interest rate and wages
- Findings:
 - 1. Model achieves close fit for all labor market flows
 - 2. Consistent with recent evidence on MPCs and MPEs
 - 3. Implies quantitatively important increase in labor supply


Model Implications for Monetary Policy Shock

- ► Feed in response of job-finding rate, layoff rate, real interest rates and wages from the data
- Overall response of labor market flows also determined by endogenous changes in policy functions + distribution of households across labor market states
- Choose model parameters to match IRFs of labor market flows
 - ► Targets: $\{EU_t, EN_t, UE_t, UN_t, NE_t, NU_t\}_{t=0}^{50}$
 - À la Christiano, Eichenbaum, Evans (2005) or Auclert, Rognlie, Straub (2020)
- Steady-State Results:
 - 1. Model has near-perfect fit for steady-state flow rates between E, U and N •
 - 2. Model produces quarterly MPC of 7-8%, annual MPE of 2-3% In line with (recent) literature

Response of Labor Market Flows: Model vs Data

▶ Labor market flows from model (magenta lines) largely fall within 68% CI's


▶ Response of Quits and Layoffs

▶ Response of Labor Market Stocks

The Role of Labor Supply

- ► Ability of model to match response of labor market flows could reflect endogenous changes in composition or household labor supply
- For example, decrease in UN flows could reflect
 - Greater mass of "likely searchers" in non-employment, or
 - ► Higher propensity to search for employment of all workers
- ➤ To assess relative importance of two channels, simulate model holding labor supply policy functions at steady state
 - ▶ If changes in labor supply do not matter, employment should be unaffected

The Role of Labor Supply: Employment Response

- ▶ Finding: Employment drops by additional $\approx 70\%$
 - Indicates broad-based increase in labor supply to contractionary monetary shock

Conclusion

- Estimate substantial response of supply-driven labor market flows to contractionary monetary policy shock
- Holding supply-driven flows at steady state, fall in employment doubles
- Use heterogenous agent model with frictional labor markets and participation margin to understand role of household labor supply
- ► Model fit to labor flows achieved through broad-based increase in labor supply
- Empirical evidence + model findings consistent with important role of labor supply in monetary transmission mechanism
- Future/ongoing work: study labor supply response to Covid-era transfers (e.g., "Great Resignation") and evaluate role in for subsequent inflation

Extra Slides

Cyclical Properties of Labor Market Stocks and Flows

Cyclicality of Labor Market Stocks

	Employment-	Unemployment	Participation	
	Population Ratio	Rate	Rate	
mean(x)	61.14	6.19	65.16	
std(x)/std(Y)	0.72	8.25	0.23	
corr(x, Y)	0.83	-0.85	0.35	

Note: x denotes the variable in each column, Y denotes HP-filtered log real GDP. Standard deviations and correlations are computed for HP-filtered quarterly averages. The sample is 1978-2019.

Cyclicality of Labor Market Flows

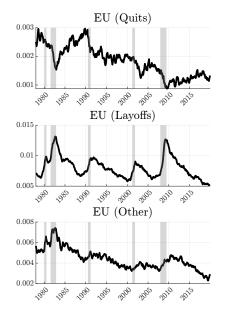
	EU	EN	UE	UN	NE	NU
mean(x)	0.014	0.030	0.255	0.226	0.046	0.025
std(x)/std(Y)	5.20	2.46	5.69	4.14	3.00	5.22
corr(x, Y)	-0.83	0.49	0.78	0.71	0.65	-0.68

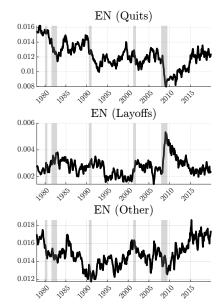
Note: x denotes the variable in each column, Y denotes HP-filtered log real GDP. Standard deviations and correlations are computed for HP-filtered quarterly averages. The sample is 1978-2019.

New Decomposition of Flows From Employment to Non-Employment

Previous work: EU flows dominated by layoffs (Elsby et al. 2009, Ahn, 2023)

	Total	Quits	Layoffs	Other
mean(x)	0.014	0.002	0.008	0.004
std(x)/std(Y)	5.20	8.11	8.03	5.43
corr(x, Y)	-0.83	0.60	-0.83	-0.54


Note: x denotes the variable in each column, Y denotes HP-filtered log real GDP. Standard deviations and correlations are computed for HP-filtered quarterly averages.


► This paper: EN flows show larger role for quits

	Total	Quits	Layoffs	Other
mean(x)	0.030	0.012	0.003	0.015
std(x)/std(Y)	2.46	5.88	14.42	4.80
corr(x, Y)	0.49	0.53	-0.44	0.25

Note: x denotes the variable in each column, Y denotes HP-filtered log real GDP. Standard deviations and correlations are computed for HP-filtered quarterly averages.

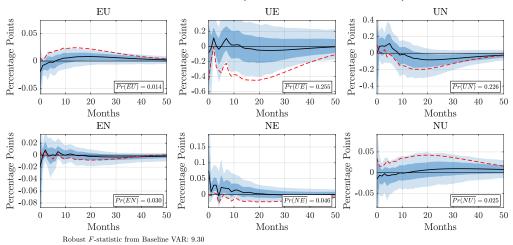
Decomposition of EU Flows

Relevance of Distinction Between Quits and Layoffs

Post-EU Transition Rates: Quits vs Layoffs

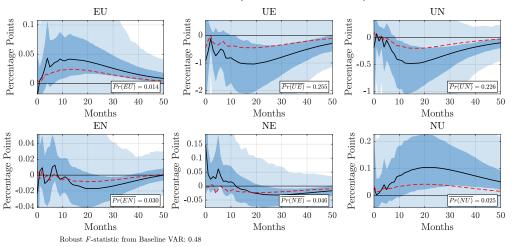
		То	
From	Е	U	N
E - U(Quit) E - U(Layoff)	0.448	0.399	0.153
E-U(Layoff)	0.426	0.468	0.106

Note: Transition rates are shown for individuals that are in their first month of unemployment following an employment spell, split by reason for unemployment.

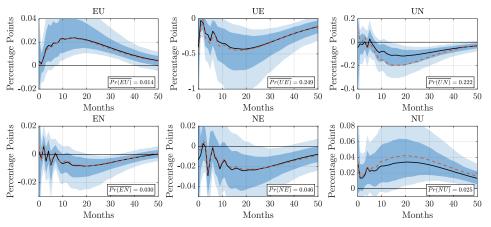

Relevance of Distinction Between Quits and Layoffs

	Average Probability
Want Job E-N(Quit)	0.224
$Want\ Job\ \ E\text{-}N(layoff)$	0.528
NE Want Job	0.152
NE Do Not Want Job	0.039
NU Want Job	0.177
NU Do Not Want Job	0.013

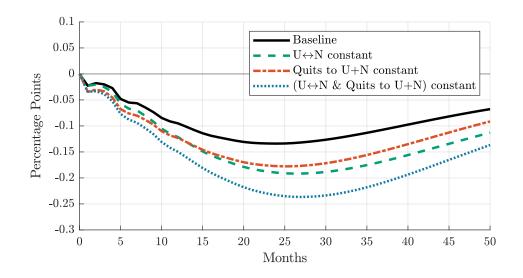
Note: The top section shows the probability that individuals want a job, split by the reason for leaving to nonparticipation. The bottom section shows the probabilities of moving to employment, split by whether or not nonparticipants report wanting a job.


Labor Market Flows: No Speeches (Not Orthogonalized)

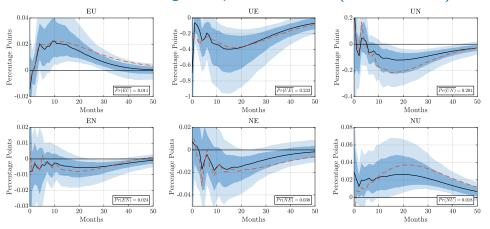
- ► High-frequency shocks from announcements only (e.g. Gertler & Karadi (2015))
- ▶ Dashed red lines report our baseline estimates


Labor Market Flows: No Speeches (Orthogonalized)

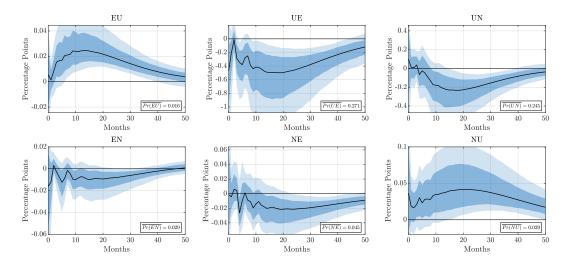
- ► From announcements only, orthogonalized as in Bauer & Swanson (2023)
- ▶ Dashed red lines report our baseline estimates



Labor Market Flows: Holding Composition Fixed

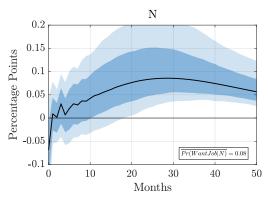

- ► Composition-adjusted flows by ex-ante characteristics, à la Elsby et al. (2015)
- lacktriangle Fix shares using bins for age imes gender imes education imes reason for unemployment
- Dashed red lines report our baseline estimates

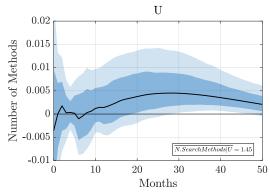
Decomposing Employment Response: Holding Composition Fixed


Labor Market Flows: Holding Composition Fixed (Full Controls)

- ► Fix shares using bins for age × gender × education × reason for unemployment × labor market status one year ago
- Dashed red lines are responses for unadjusted flows with the same sample

Labor Market Flows: Corrected for Time-Aggregation

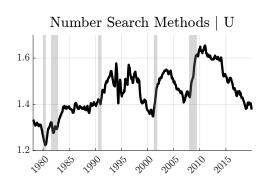


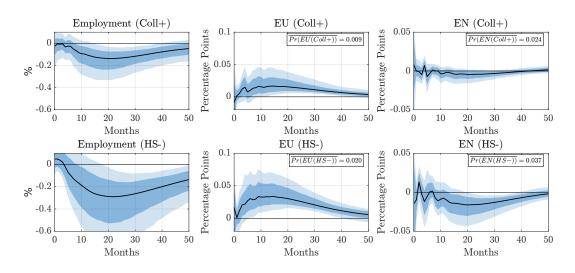


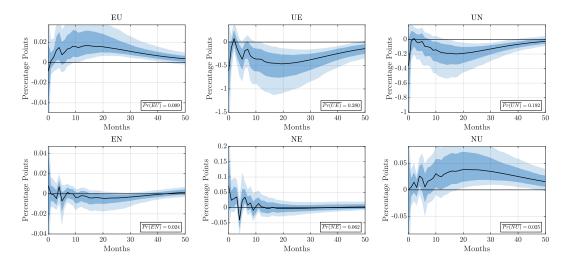
Intensive Margins of Labor Supply

Intensive margins of job search consistent with behavior of NU/UN flows:

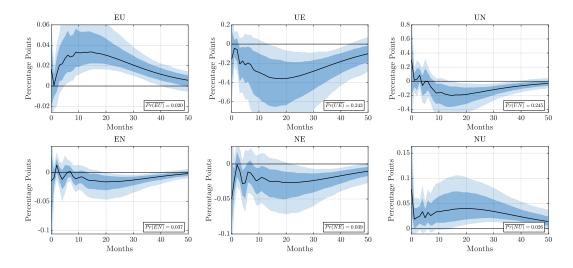
- For N: share that want a job
- ► For U: number of search methods



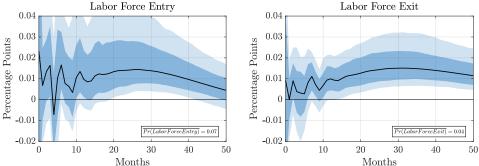

Intensive Margins: Time-Series


◆ Back

Heterogeneity in Labor Market Responses: Education


◆ Back

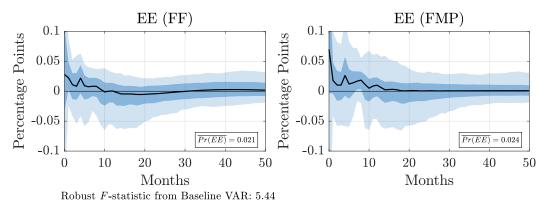
Labor Market Flows: Higher-Educated


■ Back

Labor Market Flows: Lower-Educated

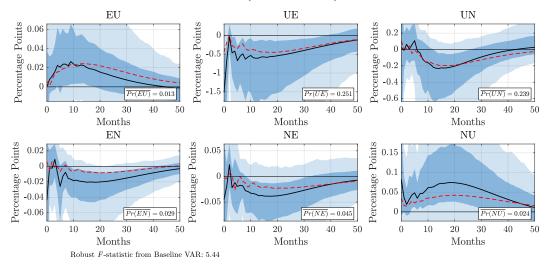
■ Back

Participation: Response of Labor Force Entry and Exit

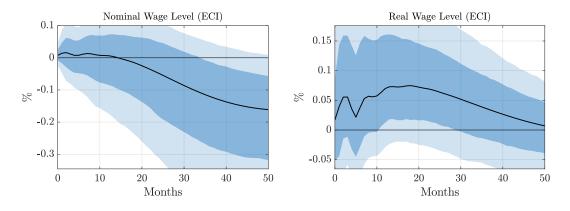

- Participation falls due to higher exit rate, offset by rise in entry
- Increase in exits driven by u_t , attenuated by EN_t and UN_t

$$\begin{aligned} & \left(\mathsf{Labor\ Force\ Entry\ Rate}\right)_t = \mathit{NU}_t + \mathit{NE}_t, \\ & \left(\mathsf{Labor\ Force\ Exit\ Rate}\right)_t = u_{t-1} \cdot \mathit{UN}_t + (1-u_{t-1}) \cdot \mathit{EN}_t, \end{aligned}$$

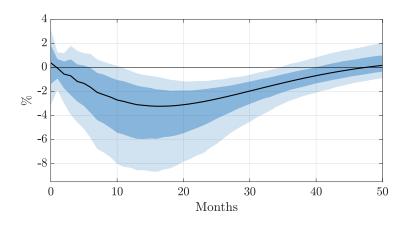
where u_{t-1} denotes the unemployment rate (and $\overline{UN} >> \overline{EN}$)


Response of Job-to-Job Flows (1995-2019)

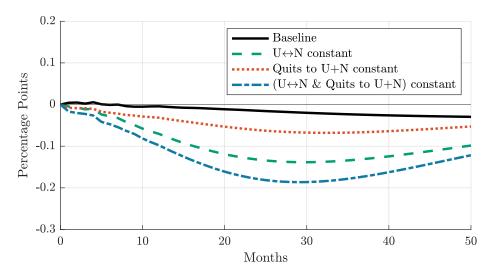
- Use measures from Fujita, Moscarini, Postel-Vinay (2024)
- ► No response of EE rate to contractionary MPS
- Cyclicality of EE series from CPS likely muted by workers who "jump ship"


Response of Labor Market Flows (1995-2019)

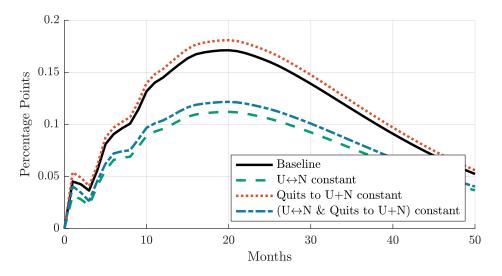
Dashed red lines report impulse responses using full sample


Response of Wages

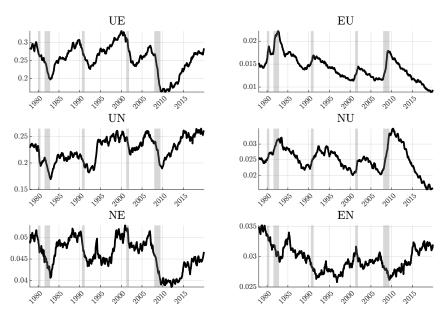
- ► Nominal wages decline more slowly than CPI
- ► So real wages rise slightly in the short-run



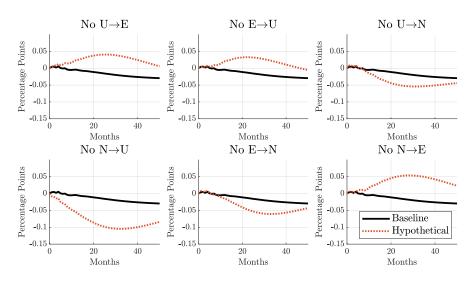
Response of Vacancies


Participation Response to a Monetary Policy Shock

▶ With response of supply-driven flows fixed ⇒ Participation far more procyclical

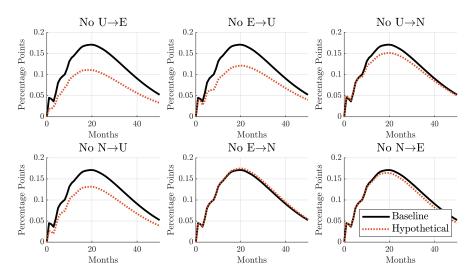

Unemployment Response to a Monetary Policy Shock

▶ Response of quits not important for unemployment dynamics

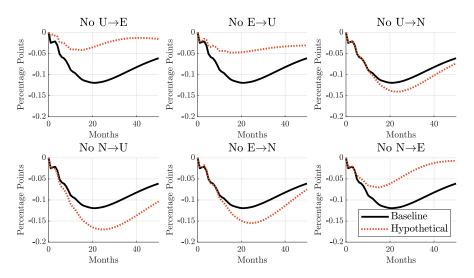


Time Series of Labor Market Flows

◆ Back


The Ins and Outs of Participation

ightharpoonup EightharpoonupU and UightharpoonupE are important for participation cycle


The Ins and Outs of Unemployment

ightharpoonup EightharpoonupU and UightharpoonupE roughly equally responsible for rise in unemployment

The Ins and Outs of Employment

 \triangleright N \rightarrow U more important than U \rightarrow N for supporting employment

Timin within a Model Period

- 1. All individuals draw a new value of productivity, z. Non-employed individuals draw an i.i.d. search cost, κ .
- 2. Employed individuals make consumption/saving decisions and choose whether or not to quit their job. Non-employed individuals make consumption/saving decisions and choose whether or not to search for a job.
- 3. Employed individuals who do not quit are exogenously laid off with probability δ . Non-employed individuals receive job offers with probabilities f_s of f_{ns} , depending on whether or not they actively search.
- 4. Non-employed individuals who receive job offers decide whether or not to accept such offers.
- 5. UI-eligible non-employed individuals who search and either do not receive a job offer or do not accept an offer are subject to UI expiry with probability δ_{UI} .

∢ Back

Value Functions

Let $V_E(a,z)$, $V_U(a,z,\kappa)$, and $V_N(a,z,\kappa)$ represent the values of being employed, UI-eligible non-employed, and UI-ineligible non-employed

- a is assets
- \triangleright z is idiosyncratic productivity, AR(1) process in logs
- \triangleright κ is the cost of job search, iid from logistic distribution

$$V_E(a,z) = \max_{c,a'} \left\{ u(c) + \beta \max \{ \mathbb{E} \ V_N(a',z',\kappa'), \mathbb{E} \big[\delta_L V_U(a',z',\kappa') + (1-\delta_L) V_E(a',z') \big] \} \right\}$$
subject to
$$c + a' = \bar{R}a + (1-\tau)wz + T, \quad a' \ge 0$$

◆ Back

Value Functions

Let $V_E(a,z)$, $V_U(a,z,\kappa)$, and $V_N(a,z,\kappa)$ represent the values of being employed, UI-eligible non-employed, and UI-ineligible non-employed

$$\begin{aligned} V_U(a,z,\kappa) &= \max_{c,a'} \bigg\{ u(c) + \max \Big\{ (1-\kappa)\psi + \beta \mathcal{V}_U^s(a',z), \psi + \beta \mathcal{V}_U^{ns}(a',z) \Big\} \bigg\} \\ &\text{subject to} \\ c+a' &= \bar{R}a + (1-\tau) \min \{ \phi wz, \bar{\phi} \} + T, \quad a' \geq 0 \end{aligned}$$

where

$$\begin{split} \mathcal{V}_{U}^{s}(a',z) &= f_{s} \cdot \max\{\mathbb{E} \ V_{E}(a',z'), \mathbb{E} \ \tilde{V}_{U}(a',z',\kappa')\} + (1-f_{s}) \, \mathbb{E} \ \tilde{V}_{U}(a',z',\kappa') \\ \mathcal{V}_{U}^{ns}(a',z) &= f_{ns} \cdot \max\{\mathbb{E} \ V_{E}(a',z'), \mathbb{E} \ V_{N}(a',z',\kappa')\} + (1-f_{ns}) \, \mathbb{E} \ V_{N}(a',z',\kappa') \\ \tilde{V}_{U}(a,z,\kappa) &= \delta_{UI} \, V_{N}(a,z,\kappa) + (1-\delta_{UI}) \, V_{U}(a,z,\kappa). \end{split}$$

Value Functions

Let $V_E(a,z)$, $V_U(a,z,\kappa)$, and $V_N(a,z,\kappa)$ represent the values of being employed, UI-eligible non-employed, and UI-ineligible non-employed

$$V_{N}(a, z, \kappa) = \max_{c, a'} \left\{ u(c) + \max \left\{ (1 - \kappa)\psi + \beta \mathcal{V}_{N}^{s}(a', z), \psi + \beta \mathcal{V}_{N}^{ns}(a', z) \right\} \right\}$$
 (3) subject to
$$c + a' = \bar{R}a + T, \quad a' \ge 0$$
 (4)

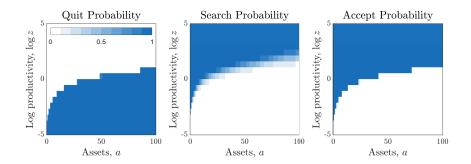
where

$$\begin{split} \mathcal{V}_{N}^{s}(a',z) &= f_{s} \cdot \max\{\mathbb{E} \ V_{E}(a',z'), \mathbb{E} \ V_{N}(a',z',\kappa')\} + (1-f_{s}) \, \mathbb{E} \ V_{N}(a',z',\kappa') \\ \mathcal{V}_{N}^{ns}(a',z) &= f_{ns} \cdot \max\{\mathbb{E} \ V_{E}(a',z'), \mathbb{E} \ V_{N}(a',z',\kappa')\} + (1-f_{ns}) \, \mathbb{E} \ V_{N}(a',z',\kappa') \end{split}$$

. ◀ Back

Model Parameters

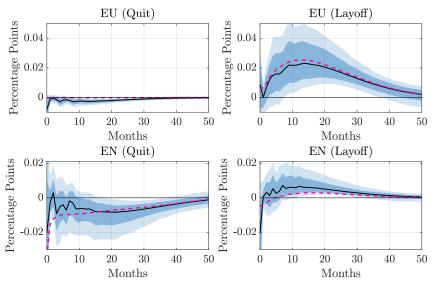
Calibrated				
Parameter	Description	Value	Source/Target	
β	Discount Factor	0.988	Quarterly MPC of 7-8%	
R	Steady-State Real Interest Rate	1.001	1% Annual	
γ	Risk Aversion Coefficient	2	Standard value	
δ^{UI}	Benefit Exhaustion Probability	0.167	Expected duration of UI	
W	Steady-State Wage	1	Normalization	
α	Efficiency of Passive Search	0.6	Job-finding rate from ${\sf N}$	
ϕ	UI Replacement Rate	0.50	Graves (2023)	
$\bar{\phi}$	Maximum UI Payments	1.85	Graves (2023)	
τ	Labor Income Tax Rate	0.33	Auclert et al. (2021)	
T	Lump-sum Transfer	0.24	Auclert et al. (2021)	
Estimated				
Parameter	Description	Value	Standard Error	
ρ_z	Persistence of Labor Productivity	0.960	(0.004)	
σ_{z}	Standard Deviation of Labor Productivity	0.362	(0.023)	
μ_{κ}	Mean Value of Search Cost	0.783	(0.105)	



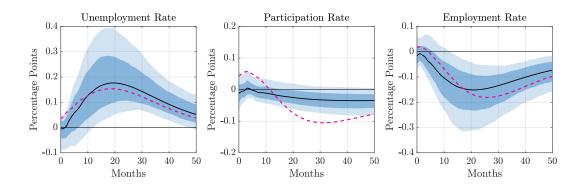
Steady-State Labor Market Flows

Transition Rate	Model	Data
EU	0.0143	0.0143
EN	0.0297	0.0296
UE	0.2547	0.2547
UN	0.2260	0.2262
NE	0.0462	0.0461
NU	0.0253	0.0252

◆ Back


Steady State Policy Functions

► Substantial variation in attachment to employment across state space



Response of Quits and Layoffs: Model vs Data

Response of Labor Market Stocks: Model vs Data

■ Back